Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-05T15:35:26.452Z Has data issue: false hasContentIssue false

Channel noise in nerve membranes and lipid bilayers

Published online by Cambridge University Press:  17 March 2009

F Conti
Affiliation:
Laboratorio di Cibernetica e Biofisica, CNR, Camogli, Italy; Laboratorium für Biochemie, ETH, Zürich, Switzerland
E. Wanke
Affiliation:
Laboratorio di Cibernetica e Biofisica, CNR, Camogli, Italy

Extract

The basic principles underlying fluctuation phenomena in thermodynamics have long been understood (for reviews see Kubo, 1957; Kubo, Matsuo & Kazuhiro 1973 Lax, 1960). Classical examples of how fluctuation analysis can provide an insight into the corpuscular nature of matter are the determination of Avogadro's number according to Einstein's theory of Brownian motion (see, e.g. Uhlenbeck & Ornstein, 1930; Kac, 1947) and the evaluation of the electronic charge from the shot noise in vacuum tubes (see Van der Ziel, 1970).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, O., Latorre, R. & Vergudo, P. (1975). Kinetic characteristics of the ElM channel in oxidized cholesterol and brain lipid bilayer membranes. J. gen. Physiol. 65, 421–39.CrossRefGoogle Scholar
Anderson, C. R. & Stevens, C. F. (1973). Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol., Lond. 235, 655–91.Google Scholar
Armstrong, C. M. (1975). Ionic pores, gates, and gating currents. Q. Rev. Biophys. 7, 179210.CrossRefGoogle Scholar
Armstrong, C. M. & Bezanilla, F. (1974). Charge movement associated with the opening and closing of the activation gates of the Na channels. J. gen. Physiol. 63, 533–52.CrossRefGoogle ScholarPubMed
Armstrong, C. M. & Binstock, L. (1965). Anomalous rectification in the squid giant axon injected wth tetraethylammonium chloride. J. gen. Physiol. 48, 859–72..Google Scholar
Bamberg, E. & Läger, P. (1973). Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membrane Biol. 11, 177–94.Google Scholar
Bean, R. C. (1972). Multiple conductance states in single channels of variable resistance in lipid bilayer membranes. J. Membrane Biol. 7, 1528.CrossRefGoogle ScholarPubMed
Bean, R. C., Shepherd, W. C., Chan, H. & Eichner, J. T. (1969). Discrete conductance fluctuations in lipid bilayer protein membranes. J. gen. Physiol. 53, 741–575.CrossRefGoogle ScholarPubMed
Begenisich, T. & Stevens, C. F. (1975). How many conductance states do potassium channels have? Biophys. J. 15, 843–46.CrossRefGoogle Scholar
Boheim, G. (1974) Statistical analysis of alamethicin channels in black lipid membranes. J. Membrane Biol. 19, 277302.Google Scholar
Cass, A., Finkelstein, A. & Krespi, V. (1970). The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. gen. Physiol. 56, 100–23.Google Scholar
Chen, D. R. & Hill, H. T. (1973). Fluctuations and noise in kinetic system: application to K+ channels in the squid axon. Biophys. J. 13, 1276–95.Google Scholar
Cole, K. S. (1968). Membranes, Ions and Impulses. Berkeley: University of California Press.Google Scholar
Cole, K. S. & Moore, J. W. (1960). Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1, 114.Google Scholar
Conti, F. (1970). Nerve membrane electrical characteristics near the resting state. Biophysik 6, 257–70.Google Scholar
Conti, F., De, Felice L. J. & Wanke, E. (1975). Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol., Lond. 248, 4582.CrossRefGoogle ScholarPubMed
Conti, F., Fioravanti, R. & Wanke, E. (1973). Fenomeni di breakdown elettrico nella membrana dell'assone gigante di calamaro. Atti del I Congresso della Società Italiana di Biofisica Pura ed Applicata.Google Scholar
Davenport, W. B. & Root, W. L. (1958). An Introduction to the Theory of Random Signals and Noise. New York: McGraw-Hill Book Co.Google Scholar
De Felice, L. J. & Firth, D. R. (1970). Spontaneous voltage fluctuations in glass microelectrodes. IEEE Trans. Bio-med. Engng 18, 339–51.Google Scholar
De Felice, L. J. & Michalides, J. P. L. M. (1972). Electrical noise from synthetic membranes. J. Membrane Biol. 9, 261–90.CrossRefGoogle Scholar
De Felice, L. J., Wanke, E. & Conti, F. (1975). Potassium and sodium current noise from squid axon membranes. Fedn Proc. Fedn Am. Socs exp. Biol. 34, 1338–42.Google ScholarPubMed
Del, Castillo J. & Katz, B. (1954). Changes in end-plate activity produced by pre-synaptic depolarization. J. Physiol., Lond. 124, 586604.Google Scholar
Derksen, H. E. (1965). Axon membrane voltage fluctuations. Acta physiol. Pharmacol. néerl. 13, 373466.Google Scholar
Derksen, H. E. & Verveen, A. A. (1966). Fluctuations of resting membrane potential. Science, N.Y. 151, 1388–9.Google Scholar
Ehrenstein, G., Blumenthal, R., Latorre, R. & Lecar, H. (1974). Kinetics of opening and closing of individual ElM channels in lipid bilayer. J. gen. Physiol. 63, 707–21.Google Scholar
Ehrenstein, G. & Gilbert, D. L. (1966). Slow changes of potassium permeability in the squid giant axon. Biophys. J. 6, 553–64.Google Scholar
Ehrenstein, G., Lecar, H. & Nossal, R. (1970). The nature of the negative resistance in bimolecular lipid membranes containing excitability- inducing material. J. gen. Physiol. 65, 119–33.Google Scholar
Eisenberg, M., Hall, J. E. & Mead, C. A.(1973) The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J. Membrane Biol. 14, 143–76.CrossRefGoogle ScholarPubMed
Feher, G. & Weissman, M. (1973). Fluctuation spectroscopy: determination of chemical reaction kinetics from the frequency spectrum of fluctuations. Proc. natn. Acad. Sci. U.S.A. 70, 870–5.Google Scholar
Fettiplace, R., Gordon, L. G. M., Hladky, S. B., Requena, J., Ringsheim, H. P. & Haydon, D. A. (1975). In Methods in Membrane Biology, vol. 4 (ed. Korn, E. D.). New York and London: Plenum Press.Google Scholar
Finkelstein, A. & Holz, R. (1972). Acqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes: A Series of Advances (ed. Eisenman, G.). New York: M. Dekker, Inc.Google Scholar
Fishman, H. M. (1973). Relaxation spectra of potassium channel noise from squid axon membranes. Proc. natn. Acad. Sci. U.S.A. 70, 876–9.Google Scholar
Fishman, H. M. (1975). Noise measurements in axon membranes. Fedn Proc. Fedn Am. Socs exp. Biol. 34, 1330–7.Google ScholarPubMed
Frankenhaeuser, B. & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibers of Loligo. J. Physiol., Lond. 131, 341–76.CrossRefGoogle ScholarPubMed
Gordon, L. G. M. & Haydon, D. A. (1972). The unit conductance channel of alamethicin. Biochim. biophys. Acta 255, 1014–18.CrossRefGoogle Scholar
Gordon, M. G. M. & Haydon, D. A. (1975). Potential-dependent conductances in lipid membranes containing alamethicin. Phil. Trans. R. Soc. Lond. B 270, 433–47.Google ScholarPubMed
Haydon, D. A., Hladky, S. B. & Gordon, L. G. M. (1972). The single channel technique in the study of ion transport across membranes. Proc. VIII FEBS Meeting, vol. 28, 307–16.Google Scholar
Hill, T. L. & Chen, Yi-Der (1972 a). On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K+ channels. Biophys. J. 12, 948–59.CrossRefGoogle ScholarPubMed
Hill, T. L. & Chen, Yi-Der (1972 b). On the theory of ion transport across the nerve membrane. V. Two models for the Cole-Moore K+ hyperpolarization delay. Biophys. J. 12, 960–76.CrossRefGoogle ScholarPubMed
Hladky, S. B. & Haydon, D. A. (1970). Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature, Lond. 225, 451–3.CrossRefGoogle ScholarPubMed
Hladky, S. B. & Haydon, D. A. (1972). Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel. Biochim. biophys. Acta, 274, 294312.Google Scholar
Hodgkin, H. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., Lond. 117, 507–44.CrossRefGoogle ScholarPubMed
Hooge, F. N. & Gaal, J. L. M. (1970). Fluctuations with a I/f spectrum in the conductance of ionic solutions and in the voltage of concentration cells. Philips Res. Rep. 26, 7790.Google Scholar
Johnson, J. B. (1928). Thermal agitation of electricity in conductors. Phys. Rev. 32, 97109.Google Scholar
Kac, M. (1947). Random walk and the theory of Brownian motion. Am. Math. Monthly 54, 369–91. Also reprinted in Selected Papers on Noise and Stochastic Processes (ed. Wax, N.). New York: Dover Publ. Inc., 1954.Google Scholar
Katz, B. & Miledi, R. (1970). Membrane noise produced by acetylcholine. Nature, Lond. 225, 962–3.CrossRefGoogle Scholar
Katz, B. & Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components. J. Physiol., Lond. 224, 665–99.Google Scholar
Katz, B. & Miledi, R. (1973). The characteristics of ‘end-plate noise’ produced by different depolarizing drugs. J. Physiol., Lond. 230, 707–17.CrossRefGoogle ScholarPubMed
Keynes, R. D. (1975). The organization of the ionic channels in nerve membranes. NINDS 25th Anniversary volume.Google Scholar
Keynes, R. D., Bezanilla, F., Rojas, E. & Taylor, R. E. (1975). The rate of action of tetrodotoxin on sodium conductance in the squid giant axon. Phil. Trans. R. Soc. Lond. B 270, 365–75.Google Scholar
Keynes, R. D. & Rojas, E. (1976). The temporal and steady-state relationships between activation of the sodium conductance and movement of the gating particles in the squid giant axon. J. Physiol., Lond. 255, 157189.Google Scholar
Khinchin, A. I. (1949). Mathematical Foundations of Statistical Mechanics. New York: Dover Publ. Inc.Google Scholar
Kolb, H. A., Läuger, P. & Bamberg, E. (1975). Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels. J. Membrane Biol. 20, 133–54.Google Scholar
Kubo, R. (1957). Statistical mechanical theory of irreversible processes. General theory and simple applications to magnetic and conduction problems. J. Physiol. Soc. Japan 12, 570–86.CrossRefGoogle Scholar
Kubo, R., Matsuo, K. & Kazuhiro, K. (1973). Fluctuation and relaxation of macrovariables. J. Stat. Phys. 9, 5196.Google Scholar
Latorre, R., Ehrenstein, G. & Lecar, H. (1972). Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes. J. gen. Physiol. 60, 7285.Google Scholar
Läuger, P. (1972). Carrier mediated ion transport. Science, N.Y. 178, 2430.Google Scholar
Lax, M. (1960). Fluctuations from the nonequilibrium steady state. Rev. mod. Phys. 32, 2564.Google Scholar
Lecar, H. & Nossal, R. (1971). Theory of threshold fluctuations in nerves I, II. Biophys. J. II, 1048–84.Google Scholar
Lee, Y. W. (1960). Statistical Theory of Communication. New York: J. Wiley and Sons.Google Scholar
Levinson, S. R. & Meves, H. (1975). The binding of tritiated tetrodoxin to squid giant axons. Phil. Trans. R. Soc. Lond. B 270, 349–52.Google Scholar
Mauro, A., Nanavati, R. P. & Heyer, E. (1972). Time-variant conductance of bilayer membranes treated with monazomycin and alamethicin. Proc. natn. Acad. Sci. U.S.A. 69, 3742–4.CrossRefGoogle ScholarPubMed
Michalides, J. P. L. M., Wallaart, R. A. M. & De Felice, L. J. (1973). Electrical noise from PVC-Membranes. Pflügers Arch. 341, 97104.CrossRefGoogle ScholarPubMed
Middleton, D. (1960). An Introduction to Statistical Communication Theory. New York: McGraw-Hill.Google Scholar
Motchenbaver, C. D. & Fitchen, F. C. (1973). Low-noise Electronic Design, 358 pp. New York: Wiley-Interscience.Google Scholar
Mueller, P. & Rudin, D. O. (1963). Induced excitability in reconstituted cell membrane structure. J. theor. Biol. 4, 268280.CrossRefGoogle ScholarPubMed
Mueller, P., Rudin, D. O., Tien, H. T. & Westcott, W. W. (1962). Reconstitution of all membrane structure in vitro and its transformation into an excitable system. Nature, Lond. 194, 979–81.Google Scholar
Muller, R. U. & Finkelstein, A. (1972 a). Voltage-dependent conductance induced in thin lipid membranes by monazomycin. J. gen. Physiol. 60, 263–84.Google Scholar
Muller, R. U. & Finkelstein, A. (1972 b). The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin. J. gen. Physiol. 60, 285306.CrossRefGoogle ScholarPubMed
Mullins, L. J. (1959). An analysis of conductance changes in squid axon. J. gen. Physiol. 42, 1013–35.CrossRefGoogle ScholarPubMed
Mullins, L. J. (1968). A single channel or a dual channel mechanism for nerve excitation. J. gen. Physiol. 52, 550–3.Google Scholar
Narahashi, T., Moore, J. W. & Scott, W. R. (1964). Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. gen. Physiol. 47, 965–74.CrossRefGoogle ScholarPubMed
Neher, E. & Zingsheim, H. P. (1974). The properties of ionic channels measured by noise analysis in this lipid membranes. Pflügers Arch. ges. Physiol. 351, 61–7.Google Scholar
Nonner, W., Rojas, E. & Stämpfli, R. (1975). Gating currents in the node of Ranvier: voltage and time dependence. Phil. Trans. R. Soc. Lond. B 270, 483–92.Google Scholar
Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–13.Google Scholar
Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill Book Co.Google Scholar
Pooler, J. P. & Oxford, G. S. (1972). Low membrane resistance in sucrose gap - a parallel leakage path. Biochim. biophys. Acta 255, 681–4.CrossRefGoogle Scholar
Poussart, D. J. M. (1971). Membrane current noise in lobster axon under voltage clamp. Biophys. J. II, 211–34.CrossRefGoogle Scholar
Poussart, D. J. M. (1973). Low-level average power measurements: noise figure improvement through parallel or series connection of noisy amplifiers. Rev. scient. Instrum. 44, 1049–52.CrossRefGoogle Scholar
Rabiner, L. R. & Rader, C. M. (1972). Digital Signal Processing, 518 pp. New York: IEEE Press.Google Scholar
Rice, S. O. (1944). Mathematical analysis of random noise. Bell System Techn. J. 23, 282304.Google Scholar
Also reprinted in Selected Papers on Noise and Stochastic Processes (ed. Wax, N.). New York: Dover Publ. Inc., 1954.Google Scholar
Rojas, E. & Keynes, R. D. (1975). On the relation between displacement currents and activation of the sodium conductance in the squid giant axon. Phil. Trans. R. Soc. Lond. B 270, 459–82.Google Scholar
Segal, J. R. (1972). Electrical fluctuations associated with active transport. Biophys. J. 12, 1371–90.CrossRefGoogle ScholarPubMed
Siebenga, E., De Goede, J. & Verveen, A. A. (1974). The influence of TTX, DNP and TEA on membrane flicker noise and shot effect noise of the frog node of Ranvier. Pflügers Arch. ges. Physiol. 351, 2534.Google Scholar
Siebenga, E., Meyer, A. & Verveen, A. A. (1973). Membrane shot noise in electrically depolarized nodes of Ranvier. Pflügers Arch. ges. Physiol. 341, 97104.Google Scholar
Siebenga, E. & Verveen, A. A. (1971). The dependence of the I/f noise intensity of the node of Ranvier on membrane potential. In Proc. 1st Eur. Biophys. Congress (eds. Springer, A., Locker, , and Lederer, H.), pp. 219–23, Vienna: Verlag Wiener Medizinischen Chem. Akad.Google Scholar
Siebenga, E. & Verveen, A. A. (1972). Membrane noise and ion transport in the node of Ranvier. In Passive Permeability of Cell Membranes, Biomembranes, vol. 3 (eds. Slegers, J. F. and Kreuzer, F.). New York: Plenum Publ. Co.Google Scholar
Siebenga, E. & Verveen, A. A. (1970). Noise voltage of axonal membrane. Pflügers Arch. ges. Physiol. 318, 267.Google Scholar
Stevens, F. (1972). Inferences about membrane properties from electrical noise measurements. Biophys. J. 12, 1028–47.CrossRefGoogle ScholarPubMed
Tasaki, I. & Hagiwara, S. (1957). Demonstration of two stable potential states in squid giant axon under tetraethylammonium chloride. J. gen. Physiol. 40, 851–85.Google Scholar
Uhlenbeck, G. E. & Ornstein, L. S. (1930). On the theory of Brownian motion. Phys. Rev. 36, 823841.CrossRefGoogle Scholar
Also reprinted in Selected Papers on Noise and Stochastic Processes (ed. Wax, N.). New York: Dover Publ. Inc., 1954.Google Scholar
Urry, D. W. (1971). The gramicidin A transmembrane channel: a proposed π(L, D) helix. Proc. natn. Acad. Sci. U.S.A. 68, 672–6.Google Scholar
Urry, D. W., Goodall, M. C., Glickson, J. D. & Meyers, D. F. (1971). The gramicidin A transmembrane channel: characteristics of head-to- head dimerized π(L.D) helices. Proc. natn. Acad. Sci. U.S.A. 68, 1907–11.CrossRefGoogle Scholar
Van Den Berg, R. J. (1975). Conductance fluctuation in Ranvier nodes. 5th Inter. Biophysics Congr. Abstr. P-484, 134.Google Scholar
Van Der Ziel, A. (1970). Noise: Sources, Characterization, Measurements. Engelwood Cliffs, N. Y.: Prentice-Hall. Inc.Google Scholar
Van, Driessche & Borghgraef, R. (1975). Noise generated during ion transport across frog skin. Archs in Physiol. Biochim. 83, 140–3.Google Scholar
Verveen, A. A. & De Felice, L. J. (1974). Membrane noise. Prog. Biophys. molec. Biol. 28, 189265.Google Scholar
Verveen, A. A. & Derksen, H. H. (1965). Fluctuations in membrane potential of axons and the problem of coding. Kybernetik 2, 152–60.CrossRefGoogle Scholar
Verveen, A. A. & Derksen, H. E. (1968). Fluctuation phenomena in nerve membrane. Proc. IEEE 56, 906–16.Google Scholar
Verveen, A. A. & Derksen, H. E. (1969). Amplitude distribution of axon membrane noise voltage. Acta physiol. pharmacol. néerl. 15, 353–79.Google ScholarPubMed
Wanke, E. (1975). Monazomycin and nystatin channel noise. 5th Inter. Biophys. Congr. Abstr. P-368, 112.Google Scholar
Wanke, E., De Felice, L. J. & Conti, F. (1974). Voltage noise and current noise in space clamped squid giant axon. Pflügers Arch. ges. Physiol. 347, 6374.CrossRefGoogle ScholarPubMed
Yafuso, M., Kennedy, S. J. & Freeman, A. R. (1974). Spontaneous conductance changes, multilevel conductance states and negative differential resistance in oxidized cholesterol black lipid membranes. J. Membrane Biol. 17, 201–12.Google Scholar
Zingsheim, H. P. & Neher, E. (1974). The equivalence of fluctuation analysis and chemical relaxation measurements: a study of ion pore formation in thin lipid membranes. Biophys. Chem. 2, 197207.Google Scholar