Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T07:12:46.022Z Has data issue: false hasContentIssue false

Biophysical contributions to membrance structure

Published online by Cambridge University Press:  17 March 2009

J. B. Finean
Affiliation:
Department of Biochemistry, The University of Birmingham, England

Extract

Applications of physical techniques to studies of membrane structure have increased greatly in the past few years and they have begun to provide more precise structural parameters for membranes and also some indication of the physical states of the molecular constituents in the membranes. Direct measurements of membrane features have been made by electron microscopy and by X-ray diffraction methods. Spectroscopic techniques especially infrared absorption, nuclear magnetic resonance absorption and optical rotatory dispersion and circular dichroism measurements have provided additional data relating to the physical states of the molecular components in the membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blaurock, A. E. & Worthington, C. R. (1966). Treatment of low-angle X-ray data from planar and concentric multilayered structures. Biophys J. 6, 305.CrossRefGoogle ScholarPubMed
Burge, R. E. & Draper, J. C. (1967). Structure of the cell wall of the gram-negative bacterium Proteus vulgaris. II. Distribution of electron density across the wall. J. molec. Biol. 28, 189.CrossRefGoogle ScholarPubMed
Branton, D. (1967). Fracture faces of frozen myelin. Expl Cell Res. 45, 703.CrossRefGoogle ScholarPubMed
Branton, D. & Park, R. B. (1967). Subunits in chloroplast lamellae. J. Ultrastruct. Res. 19, 283.CrossRefGoogle ScholarPubMed
Chapman, D., Kamat, V. B., de Gier, J. & Penkett, S. A. (1968). Nuclear magnetic resonance studies of erythrocyte membrances. J. molec. Biol. 31, 101.CrossRefGoogle Scholar
Chapman, D., Kamat, V. B. & Levene, R. J. (1968). Infra-red spectra and the chain organisation of erythrocyte membranes. Science, N. Y. 460, 314.CrossRefGoogle Scholar
Chapman, D., Williams, R. M. & Ladbrooke, B. D. (1967). Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1, 2-diacyl-phosphatidylcholines (lecithins). Chem. Phys. Lipids 1, 445CrossRefGoogle Scholar
Davson, H. & Danielli, J. F. (1952). The Permeability of Natural Membranes, 2nd ed.London: Cambridge University Press.Google Scholar
Deamer, D. W. & Branton, D. (1967). Fracture planes in ice-bilayer model membrane systems. Science, N.Y. 158.CrossRefGoogle Scholar
Elkes, J. & Finean, J. B. (1949). The effects of drying upon the structure of myelin in the sciatic nerve of the frog. Discuss. Faraday Soc. 6, 134.CrossRefGoogle Scholar
Fernandez-Moran, H. & Finean, J. B. (1957). Electron microscope and lowangle X-ray diffraction studies of the nerve myelin sheath. J. biophys. biochem. Cytol. 3, 725.CrossRefGoogle ScholarPubMed
Finean, J. B. (1953). Further observations on the structure of myelin. Expl Cell Res. 5, 202.CrossRefGoogle ScholarPubMed
Finean, J. B. (1957). The molecular organisation of nerve myelin. Acta neurol. belg. 5, 462.Google Scholar
Finean, J. B. (1958). X-ray diffraction studies of the myelin sheath in peripheral and central nerve fibres. Expl Cell Res. Suppl. 5, p. 18.Google Scholar
Finean, J. B. (1962). The nature and stability of the plasma membrane. Circulation 26, 1151CrossRefGoogle Scholar
Finean, J. B. & Burge, R. E. (1963). The determination of the Fourier transform of the myelin layer from a study of swelling phenomena. J. molec. Biol. 7, 672.CrossRefGoogle ScholarPubMed
Finean, J. B., Coleman, R., Green, W. A. & Limbrick, A. R. (1966). Low angle X-ray diffraction and electron microscope studies of isolated cell membranes. J. Cell Sci. 1, 287.CrossRefGoogle ScholarPubMed
Finean, J. B., Coleman, R., Knutton, S., Limbrick, A. R. & Thompson, J. E. (1968). Structural studies of cell membrane preparations. J. gen. Physiol. 51, 19s.CrossRefGoogle ScholarPubMed
Finean, J. B., Knutton, S., Limerick, A. R. & Coleman, R. (1969). An X-ray diffraction study of the physical state of the lipid phase in biological membranes. Molecular Crystals. (In the Press.)CrossRefGoogle Scholar
Finean, J. B. & Millington, P. F. (1955). Low-angle X-ray diffraction study of the polymorphic forms of synthetic α:β and α:ά kephalins and α:β lecithins. Trans. Faraday Soc. 51, 1008.CrossRefGoogle Scholar
Finean, J. B. & Millington, P. F. (1957). Effects of ionic strength of immersion medium on the structure of peripheral nerve myelin. J. biophys. biochem. Cytol. 3, 89.CrossRefGoogle ScholarPubMed
Glauert, A. M. (1968). Electron microscopy of lipids and membranes. J. R. Microsc. Soc. 88, 49.CrossRefGoogle ScholarPubMed
Hosemann, R. & Kreutz, W. (1966). On the tertiary structure of the protein layers of chloroplasts. Naturwissenschaften 53, 298.CrossRefGoogle ScholarPubMed
Korn, E. D. (1968). Structure and function of the plasma membrane. J. Gen. Physiol. 52, 257s.CrossRefGoogle ScholarPubMed
Kreutz, W. (1963). Strukturuntersuchungen an Plastiden. V. Bestimmung der Electronendichte-Verteilung Längst der Flachennormalen in Thylakoid der Chloroplasten. Z. Naturf. 18b, 1098.CrossRefGoogle Scholar
Kreutz, W. (1964). Strukturuntersuchungen an Plastiden. VII. Über den Lipoprotein-Lamellen in Chloroplasten lebender Zellen. Z. Naturf. 1b, 441.Google Scholar
Ladbrooke, B. D., Jenkinson, T. K., Kamat, V. B. & Chapman, D. (1968).Physical studies on myelin. I. Thermal analysis. Biochim. biophys. Acta 164, 101.CrossRefGoogle ScholarPubMed
Ladbrooke, D. B., Williams, R. M. & Chapman, D. (1968). Studies on lecithin—cholesterol—water interactions by differential scanning calorimetry and X-ray diffraction. Biochim. biophys. Acta 150, 333.CrossRefGoogle ScholarPubMed
Lenard, J. & Singer, S. J. (1966). Protein conformation in cell membrane preparations as studied by optical rotatory dispersion and circular dichroism. Proc. natn. Acad. Sci. U.S.A. 56, 1828.CrossRefGoogle ScholarPubMed
Lenard, J. & Singer, S. J. (1968). Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J. Cell Biol. 37, 117.CrossRefGoogle ScholarPubMed
Maddy, A. H. & Malcolm, B. R. (1965). Protein conformations in the plasma membrane. Science, N.Y. 150, 1616.CrossRefGoogle ScholarPubMed
Maddy, A. H. & Malcolm, B. R. (1966). Protein conformations in biological membranes. Science, N.Y. 153, 213.CrossRefGoogle ScholarPubMed
Moody, M. F. (1963). X-ray diffraction pattern of nerve myelin: a method for determing the phases. Science, N.Y. 142, 1173.CrossRefGoogle Scholar
Mühlethaler, K., Moor, H. & Szarkowski, J. W. (1965). The ultrastructure of the chloroplast lamellae. Planta 67, 305.CrossRefGoogle Scholar
Rand, R. P. & Luzzati, V. (1968). X-ray diffraction study in water of lipids extracted from human erythrocytes. The position of cholesterol in the lipid lamellae. Biophys. J. 8, 125.CrossRefGoogle ScholarPubMed
Riemersma, J. C. (1968). Osmium tetroxide fixation of lipids for electron microscopy: a possible reaction mechanism. Biochim. biophys. Acta 152, 718.CrossRefGoogle ScholarPubMed
Riemersma, J. C. & Booij, H. L. (1962). The reaction of osmium tetroxide with lecithin. Application of staining procedures. J. Histochem. Cytochem. 10, 89.CrossRefGoogle Scholar
Schmitt, F. O., Bear, R. S. & Palmer, K. J. (1941). X-ray diffraction studies on the structure of the nerve myelin sheath. J. cell. comp. Physiol. 18, 31.CrossRefGoogle Scholar
Silvester, N. R. (1964). The cilia of Tetrahymena pyriformis: X-ray diffraction by the ciliary membrane. J. molec. Biol. 8, 11.CrossRefGoogle ScholarPubMed
Staehelin, A. L. (1968). Interpretation of freeze-etched artificial and biological membranes. J. Ultrastruct. Res. 22, 326.CrossRefGoogle Scholar
Steim, J. H. & Fleischer, S. (1967). Aggregation-induced red shift of the Cotton effect of mitochondrial structural protein. Proc. natn. Acad. Sci. U.S.A. 58, 1292.CrossRefGoogle ScholarPubMed
Thompson, J. E., Coleman, R. & Finean, J. B. (1968). Comparative X-ray diffraction and electron microscope studies of isolated mitochondrial membranes. Biochim. biophys. Acta 150, 405.CrossRefGoogle ScholarPubMed
Urry, D. W., Mednieks, M. & Bejnarowicz, E. (1967). Optical rotation of mitochondrial membranes. Proc. natn. Acad. Sci. U.S.A. 57, 1043.CrossRefGoogle ScholarPubMed
Vandenheuvel, F. A. (1963). Study of biological structure at the molecular level with stereomodel projections. I. The lipids in the myelin sheath. J. Am. Oil Chem. Soc. 40, 455.CrossRefGoogle Scholar
Wallach, D. F. H. & Zahler, P. H. (1966). Protein conformations in cellular membranes. Proc. natn. Acad. Sci. U.S.A. 56, 1552.CrossRefGoogle ScholarPubMed
Wallach, D. F. H. & Zahler, P. H. (1968). Infra red spectra of plasma membrane and endoplasmic reticulum of Ehrlich ascites carcinoma. Biochim. biophys. Acta 150, 186.CrossRefGoogle Scholar
Weier, T. E., Stocking, C. R., Bracker, C. E. & Risley, E. B. (1965). The structural relationships of the internal membrane systems of in situ and isolated chloroplasts of Hordeum vulgare. Am. J. Bot. 52, 339.CrossRefGoogle ScholarPubMed
Worthington, C. R. & Blaurock, A. E. (1968). Electron density model for nerve myelin. Nature, Lond. 218, 87.CrossRefGoogle ScholarPubMed