Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T17:50:43.415Z Has data issue: false hasContentIssue false

Biological and model membranes studied by nuclear magnetic resonance of spin one half nuclei

Published online by Cambridge University Press:  17 March 2009

Håkan Wennerström
Affiliation:
Division of Physical Chemistry 2, Chemical Centre, P.O.B. 740, S-220 07 Lund 7, Sweden
Göran Lindblom
Affiliation:
Division of Physical Chemistry 2, Chemical Centre, P.O.B. 740, S-220 07 Lund 7, Sweden

Extract

There is an inherent anisotropy in biological and model membrane systems and this anisotropy has a profound influence on the nuclear magnetic resonance spectra of such systems. For nuclei with a quadrupole moment the quadrupole coupling usually dominates the NMR spectrum, while for nuclei with spin quantum number I = ½ dipolar couplings provides the most important effects. The quadrupole coupling only affects isolated spins and usually gives rise to simple spectra. The dipole interactions on the other hand couple several spins. In a lipid bilayer with a multitude of spin-½ nuclei these couplings can give rise to complicated manybody effects. Thus the interpretation of the NMR spectra of membrane systems poses problems but at the same time there is a lot of information to be gained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barsukov, L. I., Shapiro, Yu. E., Viktorov, A. V., Volkova, V. I., Bystrov, V. F. & Bergelson, L. D. (1975). Intervesicular phospholipid exchange. An NMR study. Chem. Phys. Lipids 14, 211.CrossRefGoogle ScholarPubMed
Berden, J. A., Cullis, P. R., Hoult, D. I., McLaughlin, A. C., Radda, G. K. & Richards, R. E. (1974). Frequency dependence of 31P NMR linewidths in sonicated phospholipid vesicles: Effects of chemical shift anisotropy. FEBS Lett. 46, 55.Google Scholar
Berden, J. A., Barker, R. W. & Radda, G. K. (1975). NMR studies on phospholipid bilayer. Some factors affecting lipid distribution. Biochim. biophys. Acta 375, 186.Google Scholar
Bergelson, L. D., Barsukov, L. I., Dubrovina, N. I. & Bystrov, V. F. (1970). Differentiation of inner and outer sides of phospholipid membranes by NMR spectroscopy. Doki. Akad. Nauk. SSSR 194, 222.Google Scholar
Bloom, M., Burnell, E. E., Valic, M. I. & Weeks, (1975). Nuclear magnetic resonance line shapes in lipid bilayer model membranes. Chem. Phys. Lipids 14, 107. Erratum Chem. Phys. Lipids 14, 363.CrossRefGoogle ScholarPubMed
Bretscher, M. S. (1973). Membrane structure: Some general principles. Science, N.Y. 181, 622.Google Scholar
Brink, D. M. & Satchler, G. R. (1962). Angular Momentum. Oxford: University Press.Google Scholar
Brûlet, P. & McConnell, H. M. (1976). Protein–lipid interactions: Glycophorin and dipalmitoylphosphatidylcholine. Biochm. biophys. Res. Commun. 68, 363.CrossRefGoogle Scholar
Bull, T. E. & Lindman, B. (1975). Amphiphile diffusion in cubic lyotropic mesophases. Mol. Cryst. Liquid Cryst. 28, 155.Google Scholar
Bystrov, V. F., Shapiro, Yu. E., Viktorov, A. V., Barsukov, L. I. & Bergelson, L. D. (1972). 31P-NMR signals from inner and outer surfaces of phospholipid membranes. FEBS Lett. 25, 337.Google Scholar
Caspar, D. L. D. & Kirshner, D. A. (1971). Myelin membrane structure at 10 Å resolution. Nature (New Biol.) 231, 46.Google Scholar
Chan, S. I., Seiter, C. H. A. & Feigenson, G. W. (1972). Anisotropic and restricted molecular motion in lecithin bilayers. Biochem. biophys. Res. Commun. 46, 1488.Google Scholar
Chapman, D. & Penkett, S. A. (1966). Nuclear magnetic resonance spectroscopic studies of the interaction of phospholipids with cholesterol. Nature 211, 1304.Google Scholar
Charvolin, J. & Rigny, P. (1971). Pulsed NMR in dynamically heterogenous systems. J. Magn. Reson. 4, 40.Google Scholar
Charvolin, J. & Rigny, P. (1973). Proton relaxation study of paraffinic chain motions in a lyotropic liquid crystal. J. chem. Phys. 58, 3999.Google Scholar
Darke, A., Finer, E. G., Flook, A. G. & Philips, M. C. (1971). Complex and cluster formation in mixed lecithin cholesterol bilayers. Cooperativity of motion in lipid systems. FEBS Lett. 18, 326.Google Scholar
Davis, D. G. (1972). Phosphorus nuclear magnetic resonance in egg yolk lecithin: Field dependent line widths and phosphate group mobility. Biochem. biophys. Res. Commun. 49, 1422.CrossRefGoogle ScholarPubMed
Daycock, J. T., Darke, A. & Chapman, D. (1971). Nuclear relaxation (T 1) measurements of lecithin–water systems. Chem. Phys. Lipids 6, 205.Google Scholar
Diehl, P. & Khetrapal, C. L. (1970). NMR studies of molecules oriented in the nematic phase of liquid crystals. NMR Basic Principles and Progress, vol. 1, 1Google Scholar
von Engelrt, G. & Saupe, A. (1964). Hochaufgelöste Protonenresonanzspektren mit direkter magnetischer Dipol-Dipol-Wechselvirkung, Teil II. Naturfor. 19a, 172.Google Scholar
Fernández, M. S. & Cerbón, J. (1973). The importance of the hydrophobic interactions of local anesthetics in the displacement of polyvalent cations from artificial lipid membranes. Biochim. biophys. Acta 298, 8.CrossRefGoogle ScholarPubMed
Finean, J. B., Coleman, R. & Michell, R. H. (1974). Membranes and their Cellular Functions. Oxford: Blackwell Scientific Publications.Google Scholar
Finer, E. G., Flook, A. G. & Hauser, H. (1972 a). Mechanism of sonication of aqueous egg yolk lecithin dispersions and nature of the resultant particles. Biochim. biophys. Acta 260, 49.Google Scholar
Finer, E. G., Flook, A. G. & Hauser, H. (1972 b). The nature and origin of the NMR spectrum of unsonicated and sonicated aqueous egg yolk lecithin dispersions. Biochim. biophys. Acta 260, 59.CrossRefGoogle ScholarPubMed
Finer, E. G. (1974). Calculation of molecular motional correlation times from linewidths in nuclear magnetic resonance spectra of aggregated systems. Effect of particle size on spectra of phospholipid dispersions. J. Magn. Reson. 13, 76.Google Scholar
Gent, M. P. N. & Prestegard, J. H. (1974). Cholesterol-phosphatidylcholine interactions in vesicle systems. Implications of vesicle size and proton magnetic resonance line-width changes. Biochemistry, N. Y. 13, 4027.CrossRefGoogle ScholarPubMed
Godici, P. E. & Landsberger, F. R. (1974). The dynamic structure of lipid membranes. A 13C nuclear magnetic resonance study using spin labels. Biochemistry, N.Y. 12, 362.CrossRefGoogle Scholar
Hansen, J. R. & Lawson, K. D. (1970). Magnetic relaxation in ordered systems. Nature 225, 542.CrossRefGoogle ScholarPubMed
James, T. L. & McDonald, G. G. (1973). Measurement of the self-diffusion coefficient of each component in a complex system using pulsed gradient Fourier transform NMR. J. Magn. Reson. 11, 58.Google Scholar
Jendrasiak, G. J. (1972). Halide interactions with phospholipids: Proton magnetic resonance studies. Chem. Phys. Lipids 9, 133.CrossRefGoogle ScholarPubMed
Keough, K. M., Oldfield, D. & Chapman, D. (1973). Carbon-13 and proton nuclear magnetic resonance of unsonicated model and mitochondrial membranes. Chem. Phys. Lipids 10, 37.Google Scholar
Kroon, P. A., Kainosho, M. & Chan, S. I. (1975). State of molecular motion of cholesterol in lecithin bilayers. Nature 256, 582.CrossRefGoogle ScholarPubMed
de Kruijff, B., Cullis, P. R. & Radda, G. K. (1975). Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated liposomes. Biochim. biophys. Acta 406, 6.CrossRefGoogle Scholar
Lange, Y., Ralph, E. K. & Redfield, A. G. (1975). Observation of the phosphatidyl ethanolamine amino proton magnetic resonance in phospholipid vesicles: Inside/outside ratios and proton transport. Biochem. biophys. Res. Commun. 62, 891.Google Scholar
Lau, A. L. & Chan, S. I. (1975). Alamethicin-mediated fusion of lecithin vesicles. Proc. natn. Acad. Sci. U.S.A. 72, 2170.Google Scholar
Lawson, K. D. & Flautt, J. T. (1968). Mesomorphic phases. II. Proton and deuterium magnetic resonance studies of the dimethyldodecylamine oxide-deuterium oxide system. J. phys. Chem. 72, 2066.Google Scholar
Lee, A. G., Birdsall, N. J. & Metcalfe, J. C. (1974 a). Nuclear magnetic relaxation and the biological membrane. In Methods in Membrane Biology (ed. Korn, E.). New York: Plenum Press.Google Scholar
Lee, A. G., (1975) Funtional progerties of biological membranes: A physical-chemical approach. In Progr. Biophys. Mol. Biol. 29 (ed. Butler, J. A. V. and Noble, D.) Oxford: Pergamon Press.Google Scholar
Levine, Y. K., Partington, P., Roberts, G. C. K., Birdsall, N. J., Lee, A. G. & Metcalfe, J. C. (1972). 13C nuclear magnetic relaxation times and models for chain motion in lecithin vesicles. FEBS Lett. 23, 203.Google Scholar
Levine, Y. K., Birdsall, N. J., Lee, A. G., Metcalfe, J. C., Partington, P. & Roberts, G. C. K. (1974) Calculation of dipolar nuclear magnetic relaxation times in molecules with multiple internal rotations. J. Chem. Phys. 60, 2890.CrossRefGoogle Scholar
Lichtenberg, D., Peterson, N. O., Girardet, J.-L., Kainosho, M., Kroon, P., Seiter, C. H. A., Feigenson, G. W. & Chan, S. I. (1975). The interpretation of roton magnetic resonance linewidths for lecithin dispersions. Effect of particle size and chain packing. Biochim. biophys. Acta 382, 10.Google Scholar
Lindblom, G. (1972). Ion binding in liquid crystals studied by NMR. IV 23Na NMR of macroscopically aligned lamellar mesophases. Acta chem. scand. 26, 1745.CrossRefGoogle Scholar
Lindblom, G., Wennerström, H., Arvidson, G. & Lindman, B. (1976). Lecithin translational diffusion studied by pulsed NMR. Biophys. J. 16, 1287.CrossRefGoogle Scholar
Lindblom, G. & Wennerström, H. (1976). Lipid diffusion in model membranes studied by NMR. Presented at VIIth International Conference on Magnetic Resonance in Biological Systems.St Jovite, Quebec,Canada.Google Scholar
London, R. E., Kollman, V. H. & Matwiyoff, N. A. (1975). 13C Fourier transform nuclear magnetic resonance studies of fractionated Candida utilis membranes. Biochemistry, N.Y. 14, 5492.Google Scholar
Luzzati, V. & Tardieu, A. (1974). Lipid phases: Structure and structural transitions. A. Rev. phys. Chem. 25, 79.Google Scholar
McDonald, G. G. & Vanderkooi, J. M. (1975). Application of pulsed- gradient Fourier transform nuclear magnetic resonance to the study of self-diffusion of phospholipid vesicles. Biochemistry, N.Y. 14, 2125.CrossRefGoogle Scholar
McLaughlin, A. C., Cullis, P. R., Berden, J. A. & Richards, R. E. (1975 a). 31P NMR of phospholipid membranes: Effect of chemical shift anisotropy at high magnetic field strengths. J. Magn. Reson. 20, 146.Google Scholar
McLaughlin, A. C., Cullis, P. R., Hemminga, M. A., Hoult, D. I., Radda, G. K., Ritchie, G. A., Seeley, P. J. & Richards, R. E. (1975 b). Application of 31P NMR to model and biological membrane systems. FEBS Lett. 57, 213.CrossRefGoogle ScholarPubMed
Michaelson, D. M., Horwitz, A. F. & Klein, M. P. (1973). Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry, N.Y. 12, 2637.Google Scholar
Michaelson, D. M., Horwotz, A. F. & Klein, M. P. (1974). Head group modulation of membrane fluidity in sonicated phospholipid dispersion. Biochemistry, N.Y. 13, 2605.Google Scholar
Nicolau, C., Dreeskamp, H. & Schulte-Frohlinde, D. (1974). 13C nuclear magnetic resonance relaxation measurements of α-lecithin-peptide interaction in model membranes. FEBS Lett. 43, 148.Google Scholar
Penkett, S. A., Flook, A. G. & Chapman, D. (1968). Physical studies of phospholipids. IX. Nuclear resonance studies of lipid-water systems. Chem. Phys. Lipids 2, 273.CrossRefGoogle Scholar
Phillips, M. C. & Finer, E. G. (1974) The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes. Biochim. biophys. Acta 356, 199.CrossRefGoogle ScholarPubMed
Pines, A., Gibby, M. G. & Waugh, J. W.Proton-enhanced NMR of dilute spins in solids. J. chem. Phys. 59, 569.Google Scholar
Roberts, R. T. (1973). Measurements of the diffusion coefficient in the concentrated phases of the soap–water system by nuclear magnetic resonance. Nature 242, 348.CrossRefGoogle ScholarPubMed
Rothman, J. E. & Engelman, D. M. (1972). Molecular mechanism for the interaction of phospholipid with cholesterol. Nature (New Biol.) 237, 42.Google Scholar
Sears, B. (1975). 13C nuclear magnetic resonance studies of egg phosphatidylcholine. J. Membrane Biol. 30, 59.CrossRefGoogle Scholar
Seiter, C. H. A. & Chan, S. I. (1973). Molecular motion in lipid bilayers. A nuclear magnetic resonance line width study. J. Am. chem. Soc. 95, 7541.Google Scholar
Shapiro, Yu. E., Viktorov, A. V., Volkova, V. I., Barsukov, L. I., Bystrov, V. F. & Bergelson, L. D. (1975). 13C NMR investigations of phospholipid membranes with the aid of shift reagents. Chem. Phys. Lipids 14, 227.CrossRefGoogle ScholarPubMed
Tanner, J. E. & Stejskal, E. O. (1965). Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient spin-echo method. J. chem. Phys. 49, 1768.Google Scholar
Tanner, J. E. (1970). Use of stimulated echo in NMR diffusion studies. J. chem. Phys. 52, 2523.CrossRefGoogle Scholar
Ulmius, J., Wennerström, H., Lindblom, G. & Arvidson, G. (1975). Proton NMR bandshape studies of lamellar liquid crystals and gel phases containing lecithin and cholesterol. Biochim. biophys. Acta 389, 197.CrossRefGoogle ScholarPubMed
Urbina, J. & Waugh, J. S. (1974). Proton enhanced 13C nuclear magnetic resonance of lipids and biomembranes. Proc. natn. Acad. Sci. U.S.A. 71, 5062.CrossRefGoogle ScholarPubMed
Veksli, Z., Salsbury, N. J. & Chapman, D. (1969). Physical studies of phospholipids. XII. Nuclear magnetic resonance studies of molecular motion in some pure lecithin–water systems. Biochim. biophys. Acta 183, 434.CrossRefGoogle ScholarPubMed
Verkleij, A. J., Zwaal, R. F. A., Roelofsen, B., Comfurius, P., Kastelijn, D. & Van Deenen, L. L. M. (1973). The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. biophys. Acta 323, 178.Google Scholar
de Vries, J. J. & Berendsen, H. J. C. (1969). Nuclear magnetic resonance measurements on a macroscopically ordered smetic liquid crystalline phase. Nature 221, 1139.Google Scholar
Wennerström, H. (1973 a).Proton nuclear magnetic resonance lineshapes in lamellar liquid crystals. Chem. Phys. Letters 18, 41.Google Scholar
Wennerström, H. (1973 b). A new approach to spin diffusion. J. Magn. Reson 11, 219.Google Scholar
Wennerström, H., Lindblom, G. & Lindman, B. (1974). Theoretical aspects on NMR of quadrupolar nuclei in micellar solutions and amphiphilic liquid crystals. Chem. Scr. 6, 97.Google Scholar
Wennerström, H. & Ulmius, J. (1976). Proton NMR bandshapes in phospholipid bilayer vesicles. J. Magn. Reson. 23, 431,Google Scholar
Yeagle, P. L., Hytton, W. C., Huang, C.-H. & Martin, B. (1975). Head group conformation and lipid cholesterol association in phosphatidylcholine vesicles. A 31P{H} nuclear Overhauser effect study. Proc. natn. Acad. Sci. U.S.A. 72, 3477.CrossRefGoogle Scholar