Hostname: page-component-599cfd5f84-56l7z Total loading time: 0 Render date: 2025-01-07T07:49:33.577Z Has data issue: false hasContentIssue false

Antibody-induced conformational changes in proteins

Published online by Cambridge University Press:  17 March 2009

Franco Celada
Affiliation:
Laboratory of Cell Biology, CNR, Via G. Romagnosi 18 A, Rome, Italy, and Institute of Biological Chemistry, University of Rome, Rome, Italy
Roberto Strom
Affiliation:
Laboratory of Cell Biology, CNR, Via G. Romagnosi 18 A, Rome, Italy, and Institute of Biological Chemistry, University of Rome, Rome, Italy

Abstract

Several cases of modifications of functional properties of proteins upon specific interaction with antibodies have been reported in the last few years. The purpose of this paper is to discuss evidence that these effects may be due to conformational changes in the protein molecule.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpers, J. B. & Paulus, H. (1971). Allosteric preconditioning: role of allosteric ligands in promoting the maturation of enzymes. Nature, Lond. 233, 47.CrossRefGoogle ScholarPubMed
Antonini, E. & Brunori, M. (1971). Hemoglobin and Myoglobin in their Reactions with Ligands. Amsterdam: North Holland Publishing Co.Google Scholar
Axén, R., Carlsson, J., Jansson, J. C. & Porath, J. (1971). Ribonuclease chemically attached to beads of epichlorohydrin cross-linked agarose. Enzymologia 41, 359.Google ScholarPubMed
Celada, F., Strom, R. & Bodlund, K. (1970). Antibody mediated activation of a defective β-galactosidase (AMEF). Characteristics of binding and activation processes. In The Lactose Operon (ed. Beckwith, J. R. and Zipser, D.), p. 291. Cold Spring Harbor Laboratory.Google Scholar
Celada, F., Ellis, J., Bodlund, K. & Rotman, B. (1971). Antibody-mediated activation of a defective β-D-galactosidase. II. Immunological relationship between the normal and the defective enzyme. J. exp. Med. 134, 751.CrossRefGoogle ScholarPubMed
Celada, F. & Ullmann, A. (1972). Facilitating effect of antibody on β-galactosidase complementation. (To be published.)Google Scholar
Cinader, B. (1965). Antibodies to Enzymes – a discussion of the mechanisms of inhibition and activation. In Antibodies to Biologically Active Molecules, ed. Cinader, B.. Proc. 2nd Meeting Fed. Europ. Biochem. Soc., Vienna 1965, p. 65. Oxford: Pergamon Press.Google Scholar
Cinader, B. & Lafferty, K. J. (1963). Antibody as inhibitor of ribonuclease: the role of steric hindrance, aggregate formation, and specificity. Ann. N.Y. Acad. Sci. 103, 653.CrossRefGoogle ScholarPubMed
Cinader, B., Suzuki, T. & Pelichová, H. (1971). Enzyme activation by antibody. III. The effect of antibody on activity restoration in mixtures of S-peptide and S-protein. J. Immunol. 106, 1381.CrossRefGoogle Scholar
Citri, N. & Pollock, M. R. (1966). The biochemistry and function of β-lactamase (penicillinase). Adv. Enzymol. 28, 237.Google ScholarPubMed
Cohn, M. & Torriani, A. M. (1952). Immunochemical studies with the β-galactosidase and structurally related proteins of Escherichia coli. J. Immun. 69, 471.CrossRefGoogle ScholarPubMed
Conway-Jacobs, A., Schechter, B. & Sela, M. (1970). Extrinsic cotton effect and immunological properties of the p-azobenzenearsonate hapten attached to a helical amino acid copolymer. Biochemistry, N.Y. 9, 4870.CrossRefGoogle ScholarPubMed
Conway-Jacobs, A., Schechter, B. & Sela, M. (1971). A comparison of the antigenic specificity of random and ordered linear polypeptides composed of L-tyrosine, L-alafline and L-glutamic acid. Eur. J. Biochem. 20, 325.Google Scholar
Cowie, D. B., Spiegelman, S., Roberts, R. B. & Duerksen, J. D. (1961). Ribosome-bound β-galactosidase. Proc. natn. Acad. Sci. U.S.A. 47, 114.CrossRefGoogle ScholarPubMed
Crumpton, M. J. (1966). Conformational changes in sperm-whale metmyoglobin due to combination with antibodies to apomyoglonin. Biochem. J. 100, 223.CrossRefGoogle Scholar
Davis, B. D., Dulbecco, R., Eisen, H. N., Ginsberg, H. S. & Wood, W. B. Jr (1967). Microbiology and Immunology. New York: Harper and Row.Google Scholar
De Lorenzo, F., Goldberger, R. F., Steers, E. Jr, Givol, D. & Anfinsen, C. B. (1966). Purification and properties of an enzyme from beef liver which catalyses sulfhydryl-disulfide interchange. J. biol. Chem. 241, 1562.CrossRefGoogle Scholar
Dosher, M. S. & Hirs, C. H. W. (1967). The heterogeneity of bovine pancreatic ribonuclease S. Biochemistry, N.Y. 6, 304.CrossRefGoogle Scholar
Feinstein, R. N., Jaroslow, B. N., Howard, J. B. & Faulhaber, J. T. (1971). Stabilization of mutant catalase by complex formation with antibody to normal catalase. J. Immun. 106, 1316.Google Scholar
Goldberg, M. E. (1970). Tertiary structure of Escherichia coli β-D-galactos- idase. J. molec. Biol. 46 441.CrossRefGoogle Scholar
Ikai, A. & Tanford, C. (1971). Kinetic evidence for incorrectly folded intermediate states in the refolding of denatured proteins. Nature, Lond. 230, 100.CrossRefGoogle ScholarPubMed
Kabat, E. A. (1961). Kabat and Mayer's Experimental Immunochemistry, 2nd ed., p. 24. Springfield, Ill.: Thomas.Google Scholar
Koshland, D. E., Nemethy, G. & Filmer, D. (1966). Comparison of experimental binding data in proteins containing subunits. Biochemistry, N.Y. 5, 365.CrossRefGoogle ScholarPubMed
Lapresle, C. & Goldstein, P. (1969). Immunogenicity of a fragment of human serum albumin. Immunology 102, 733.Google ScholarPubMed
Lederberg, S., Rotman, B. & Lederberg, V. (1964). Distribution and activity of single β-D-galactosidase centres among ribosomes of Escherichia coli. J. biol. Chem. 239, 54.CrossRefGoogle ScholarPubMed
Lin, S., Villarejo, M. & Zabin, I. (1970). β-Galactosidase: α-complementation of a deletion mutant with cyanogen bromide peptides. Biochem. biophys. Res. Commun. 40, 249.CrossRefGoogle ScholarPubMed
Melchers, F. & Messer, W. (1970). Enhanced stability against heat denaturation of E. coli wild type and mutant β-galactosidase in the presence of specific antibodies. Biochem. biophys. Res. Commun 40, 570.CrossRefGoogle ScholarPubMed
Merigan, T. C. Jr & Potts, J. T. Jr (1966). The essential role of specific conformation in the antigenicity of ribonuclease. Biochemistry, N.Y. 5, 911.CrossRefGoogle ScholarPubMed
Messer, W. & Melchers, F. (1970). The activation of mutant β-galactosidase by specific antibodies. In The Lactose Operon (ed. Beckwith, J. R. and Zipser, D.), p. 305. Cold Spring Harbor Laboratory.Google Scholar
Monod, J., Wyman, J. & Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88.CrossRefGoogle ScholarPubMed
Polgár, L. & Bender, M. L. (1970). Simulated mutation at the active site of biologically active proteins. Adv. Enzymol. 33, 381.Google Scholar
Pollock, M. R. (1964). Stimulating and inhibiting antibodies for bacterial penicillinase. Immunology 7, 707.Google ScholarPubMed
Pollock, M. R., Fleming, J. & Petrie, S. (1965). The effects of specific antibodies on the biological activities of wild type bacterial penicillinases and their mutationally altered analogues. In Antibodies to Biologically Active Molecules (ed. Cinader, B.), p. 139. Proc. 2nd Meeting Fed. Europ. Biochem. Soc., Vienna, 1965. Oxford: Pergamon Press.Google Scholar
Potts, J. T. Jr, Young, D. M., Anfinsen, C. B. & Sandoval, A. (1964). Studies on ribonuclease S. I. Limited carboxypeptidase degradation of ribonuclease S-protein and ribonuclease 5-peptide: effects of changes in primary structure on enzymic activity. J. biol. Chem. 239, 3781.Google Scholar
Reichlin, M., Udem, L. & Ranney, H. M. (1969). The effect of specific antibody on the oxygen equilibrium of human hemoglobin. Biochim. biophys. Acta 175, 49.Google Scholar
Reichlin, F. M. & Vithayathil, P. J. (1959). The preparation of subtilisinmodified ribonuclease and the separation of the peptide and protein components. J. biol. Chem. 234, 1459.Google Scholar
Fanelli, A. Rossi & Antonini, E. (1960). Dissociation of hematin from hemoprotein at neutral pH. J. biol. Chem. 235, PC 4.CrossRefGoogle Scholar
Rotman, B. & Celada, F. (1968). Antibody-mediated activation of a defective-D-galactosidase extracted from an Escherichia coli mutant. Proc. natn. Acad. Sci. U.S.A. 60, 660.CrossRefGoogle ScholarPubMed
Schechter, B., Schechter, I. & Sela, M. (1970). Antibody combining sites to a series of peptide determinants of increasing size and defined structure. J. biol. Chem. 245, 1438.Google Scholar
Schechter, B., Schechter, I., Ramachandran, J., Conway-Jacobs, A. & Sela, M. (1971 a). The synthesis and circular dichroism of a series of peptides possessing the structure (L-tyrosyl-L-alany1-L-glutamyl)n. Eur. J. Biochem. 20, 301.Google Scholar
Schechter, B., Schechter, I., Ramachandran, J., Conway-Jacobs, A.Sela, M., Benjamini, E. & Shimizu, M. (1971 b). Synthetic antigens with sequential and conformation-dependent determinants containing the same L-tyrosyl-L-alanyl-L-glutamyl sequence. Eur. J. Biochem. 20, 309.Google Scholar
Schechter, B., Schechter, I. & Sela, M. (1971c). Conformational changes in a synthetic antigen induced by specific antibodies. Eur. J. Biochem. 20, 321.CrossRefGoogle Scholar
Sela, M., Schechter, B., Schechter, I. & Borek, F. (1967). Antibodies to sequential and conformational determinants. Cold Spring Harb. Symp. Quant. Biol. 32, 537.Google Scholar
Teipel, J. W. & Koshland, D. E. Jr (1971). Kinetic aspects of conformational changes in proteins. II. Structural changes in renaturation of denatured proteins. Biochemistry, N.Y., 10, 798.Google Scholar
Ullmann, A., Jacob, F. & Monod, J. (1967). Characterization by in vitro complimentation of a peptide corresponding to an operator-proximal segment of the β-galactosidase structural gene of E. coli. J. molec. Biol. 24, 339.Google Scholar
Ullmann, A. & Monod, J. (1970). On the stoichiometry and kinetics of ω-complementation of E. coil. β-galactosidase. In The Lactose Operon. (ed. Beckwith, J. R. and Zipser, D.), p. 265. Cold Spring Harbor Laboratory.Google Scholar
Wyman, J. (1964). Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19, 223.CrossRefGoogle ScholarPubMed