Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T01:31:16.015Z Has data issue: false hasContentIssue false

An RNA folding motif: GNRA tetraloop–receptor interactions

Published online by Cambridge University Press:  05 August 2013

Julie L. Fiore
Affiliation:
JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
David J. Nesbitt*
Affiliation:
JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
*
*Author for Correspondence: D. J. Nesbitt, JILA, National Institute of Standards and Technology, Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA. Tel.: (303)492-8857; Fax: (303)492-5235; E-mail: [email protected]

Abstract

Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

13. References

Abramovitz, D. L. & Pyle, A. M. (1997). Remarkable morphological variability of a common RNA folding motif: the GNRA tetraloop–receptor interaction. Journal of Molecular Biology 266, 493506.CrossRefGoogle ScholarPubMed
Adams, P. L., Stahley, M. R., Gill, M. L., Kosek, A. B., Wang, J. M. & Strobel, S. A. (2004a). Crystal structure of a group I intron splicing intermediate. RNA 10, 18671887.CrossRefGoogle Scholar
Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. M. & Strobel, S. A. (2004b). Crystal structure of a self-splicing group I intron with both exons. Nature 430, 4550.CrossRefGoogle Scholar
Afonin, K. A., Lin, Y. P., Calkins, E. R. & Jaeger, L. (2012). Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic Acids Research 40, 21682180.CrossRefGoogle ScholarPubMed
Ansari, A., Jones, C. M., Henry, E. R., Hofrichter, J. & Eaton, W. A. (1992). The role of solvent viscosity in the dynamics of protein conformational changes. Science 256, 17961798.CrossRefGoogle ScholarPubMed
Antao, V. P. & Tinoco, I. (1992). Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Research 20, 819824.CrossRefGoogle ScholarPubMed
Antao, V. P., Lai, S. Y. & Tinoco, I. (1991). A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Research 19, 59015905.CrossRefGoogle ScholarPubMed
Antonioli, A. H., Cochrane, J. C., Lipchock, S. V. & Strobel, S. A. (2010). Plasticity of the RNA kink turn structural motif. RNA 16, 762768.CrossRefGoogle ScholarPubMed
Bai, Y., Chu, V. B., Lipfert, J., Pande, V. S., Herschlag, D. & Doniach, S. (2008). Critical assessment of nucleic acid electrostatics via experimental and computational investigation of an unfolded state ensemble. Journal of the American Chemical Society 130, 1233412341.CrossRefGoogle ScholarPubMed
Baird, N. J., Westhof, E., Qin, H., Pan, T. & Sosnick, T. R. (2005). Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. Journal of Molecular Biology 352, 712722.CrossRefGoogle ScholarPubMed
Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289, 905920.CrossRefGoogle Scholar
Bartley, L. E., Zhuang, X. W., Das, R., Chu, S. & Herschlag, D. (2003). Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. Journal of Molecular Biology 328, 10111026.CrossRefGoogle Scholar
Basu, S., Rambo, R. P., Strauss-Soukup, J., Cate, J. H., Ferre-D'amare, A. R., Strobel, S. A. & Doudna, J. A. (1998). A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nature Structural Biology 5, 986992.CrossRefGoogle Scholar
Batey, R. T., Rambo, R. P. & Doudna, J. A. (1999). Tertiary motifs in RNA structure and folding. Angewandte Chemie-International Edition 38, 23272343.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Behrouzi, R., Roh, J. H., Kilburn, D., Briber, R. M. & Woodson, S. A. (2012). Cooperative tertiary interaction network guides RNA folding. Cell 149, 348357.CrossRefGoogle ScholarPubMed
Benz-Moy, T. L. & Herschlag, D. (2011). Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. Biochemistry 50, 87338755.CrossRefGoogle ScholarPubMed
Birgisdottir, A. B., Nielsen, H., Beckert, B., Masquida, B. & Johansen, S. D. (2011). Intermolecular interaction between a branching ribozyme and associated homing endonuclease mRNA. Biological Chemistry 392, 491499.CrossRefGoogle ScholarPubMed
Bokinsky, G., Rueda, D., Misra, V. K., Rhodes, M. M., Gordus, A., Babcock, H. P., Walter, N. G. & Zhuang, X. W. (2003). Single-molecule transition-state analysis of RNA folding. Proceedings of the National Academy of Sciences, USA 100, 93029307.CrossRefGoogle ScholarPubMed
Brion, P. & Westhof, E. (1997). Hierarchy and dynamics of RNA folding. Annual Review of Biophysics and Biomolecular Structure 26, 113137.CrossRefGoogle ScholarPubMed
Brown, J. W., Nolan, J. M., Haas, E. S., Rubio, M. A. T., Major, F. & Pace, N. R. (1996). Comparative analysis of ribonuclease P RNA using gene sequences from natural microbial populations reveals tertiary structural elements. Proceedings of the National Academy of Sciences, USA 93, 30013006.CrossRefGoogle ScholarPubMed
Butcher, S. E. & Pyle, A. M. (2011). The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Accounts of Chemical Research 44, 13021311.CrossRefGoogle ScholarPubMed
Butcher, S. E., Dieckmann, T. & Feigon, J. (1997). Solution structure of a GAAA tetraloop receptor RNA. EMBO Journal 16, 74907499.CrossRefGoogle ScholarPubMed
Cate, J. H. & Doudna, J. A. (1996). Metal-binding sites in the major groove of a large ribozyme domain. Structure 4, 12211229.CrossRefGoogle ScholarPubMed
Cate, J. H., Gooding, A. R., Podell, E., Zhou, K. H., Golden, B. L., Kundrot, C. E., Cech, T. R. & Doudna, J. A. (1996a). Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 16781685.CrossRefGoogle ScholarPubMed
Cate, J. H., Gooding, A. R., Podell, E., Zhou, K. H., Golden, B. L., Szewczak, A. A., Kundrot, C. E., Cech, T. R. & Doudna, J. A. (1996b). RNA tertiary structure mediation by adenosine platforms. Science 273, 16961699.CrossRefGoogle ScholarPubMed
Chauhan, S. & Woodson, S. A. (2008). Tertiary interactions determine the accuracy of RNA folding. Journal of the American Chemical Society 130, 12961303.CrossRefGoogle ScholarPubMed
Chauhan, S., Caliskan, G., Briber, R. M., Perez-Salas, U., Rangan, P., Thirumalai, D. & Woodson, S. A. (2005). RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. Journal of Molecular Biology 353, 11991209.CrossRefGoogle ScholarPubMed
Correll, C. C. & Swinger, K. (2003). Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 angstrom resolution. RNA 9, 355363.CrossRefGoogle Scholar
Correll, C. C., Munishkin, A., Chan, Y. L., Ren, Z., Wool, I. G. & Steitz, T. A. (1998). Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proceedings of the National Academy of Sciences, USA 95, 1343613441.CrossRefGoogle ScholarPubMed
Costa, M. & Michel, F. (1995). Frequent use of the same tertiary motif by self-folding RNAs. EMBO Journal 14, 12761285.CrossRefGoogle ScholarPubMed
Costa, M. & Michel, F. (1997). Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution. EMBO Journal 16, 32893302.CrossRefGoogle ScholarPubMed
Davis, J. H., Foster, T. R., Tonelli, M. & Butcher, S. E. (2007). Role of metal ions in the tetraloop-receptor complex as analyzed by NMR. RNA 13, 7686.CrossRefGoogle ScholarPubMed
Davis, J. H., Tonelli, M., Scott, L. G., Jaeger, L., Williamson, J. R. & Butcher, S. E. (2005). RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. Journal of Molecular Biology 351, 371382.CrossRefGoogle ScholarPubMed
Dibrov, S. M., Mclean, J., Parsons, J. & Hermann, T. (2011). Self-assembling RNA square. Proceedings of the National Academy of Sciences, USA 108, 64056408.CrossRefGoogle ScholarPubMed
Ditzler, M. A., Rueda, D., Mo, J. J., Hakansson, K. & Walter, N. G. (2008). A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Research 36, 70887099.CrossRefGoogle ScholarPubMed
Doherty, E. A., Batey, R. T., Masquida, B. & Doudna, J. A. (2001). A universal mode of helix packing in RNA. Nature Structural Biology 8, 339343.CrossRefGoogle ScholarPubMed
Downey, C. D., Crisman, R. L., Randolph, T. W. & Pardi, A. (2007). Influence of hydrostatic pressure and cosolutes on RNA tertiary structure. Journal of the American Chemical Society 129, 92909291.CrossRefGoogle ScholarPubMed
Downey, C. D., Fiore, J. L., Stoddard, C. D., Hodak, J. H., Nesbitt, D. J. & Pardi, A. (2006). Metal ion dependence, thermodynamics, and kinetics for intramolecular docking of a GAAA tetraloop and receptor connected by a flexible linker. Biochemistry 45, 36643673.CrossRefGoogle ScholarPubMed
Duncan, C. D. S. & Weeks, K. M. (2010). The Mrs1 splicing factor binds the bI3 group I Intron at each of two tetraloop-receptor motifs. PLoS ONE 5, e8983.CrossRefGoogle Scholar
Fedoruk-Wyszomirska, A., Szymanski, M., Wyszko, E., Barciszewska, M. Z. & Barciszewski, J. (2009). Highly active low magnesium hammerhead ribozyme. Journal of Biochemistry 145, 451459.CrossRefGoogle ScholarPubMed
Ferre-D'amare, A. R., Zhou, K. H. & Doudna, J. A. (1998). A general module for RNA crystallization. Journal of Molecular Biology 279, 621631.CrossRefGoogle ScholarPubMed
Fersht, A. R., Matouschek, A. & Serrano, L. (1992). The folding of an Enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. Journal of Molecular Biology 224, 771782.CrossRefGoogle ScholarPubMed
Fiore, J. L., Hodak, J. H., Piestert, O., Downey, C. D. & Nesbitt, D. J. (2008). Monovalent and divalent promoted GAAA tetraloop-receptor tertiary interactions from freely diffusing single-molecule studies. Biophysical Journal 95, 38923905.CrossRefGoogle ScholarPubMed
Fiore, J. L., Holmstrom, E. D., Fiegland, L. R., Hodak, J. H. & Nesbitt, D. J. (2012a). The role of counterion valence and size in GAAA tetraloop-teceptor docking/undocking kinetics. Journal of Molecular Biology 423, 198216.CrossRefGoogle ScholarPubMed
Fiore, J. L., Holmstrom, E. D. & Nesbitt, D. J. (2012b). Entropic origin of Mg2+-facilitated RNA folding. Proceedings of the National Academy of Sciences, USA 109, 29022907.CrossRefGoogle ScholarPubMed
Fiore, J. L., Kraemer, B., Koberling, F., Erdmann, R. & Nesbitt, D. J. (2009). Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop–receptor tertiary interaction. Biochemistry 48, 25502558.CrossRefGoogle ScholarPubMed
Fujita, Y., Tanaka, T., Furuta, H. & Ikawa, Y. (2012). Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch. Journal of Bioscience and Bioengineering 113, 141145.CrossRefGoogle Scholar
Geary, C., Baudrey, S. & Jaeger, L. (2008). Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Research 36, 11381152.CrossRefGoogle ScholarPubMed
Greenfeld, M., Solomatin, S. V. & Herschlag, D. (2011). Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. Journal of Biological Chemistry 286, 1987219879.CrossRefGoogle ScholarPubMed
Greenleaf, W. J., Frieda, K. L., Foster, D. A. N., Woodside, M. T. & Block, S. M. (2008). Direct observation of hierarchical folding in single riboswitch aptamers. Science 319, 630633.CrossRefGoogle ScholarPubMed
Hanggi, P., Talkner, P. & Borkovec, M. (1990). Reaction-rate theory: 50 years after Kramers. Reviews of Modern Physics 62, 251341.CrossRefGoogle Scholar
Hedenstierna, K. O. F., Siefert, J. L., Fox, G. E. & Murgola, E. J. (2000). Co-conservation of rRNA tetraloop sequences and helix length suggests involvement of the tetraloops in higher-order interactions. Biochimie 82, 221227.CrossRefGoogle ScholarPubMed
Hendrix, D. K., Brenner, S. E. & Holbrook, S. R. (2005). RNA structural motifs: building blocks of a modular biomolecule. Quarterly Reviews of Biophysics 38, 221243.CrossRefGoogle ScholarPubMed
Heus, H. A. & Pardi, A. (1991). Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191194.CrossRefGoogle Scholar
Hodak, J. H., Downey, C. D., Fiore, J. L., Pardi, A. & Nesbitt, D. J. (2005). Docking kinetics and equilibrium of a GAAA tetraloop-receptor motif probed by single-molecule FRET. Proceedings of the National Academy of Sciences, USA 102, 1050510510.CrossRefGoogle ScholarPubMed
Holmstrom, E. D., Fiore, J. L. & Nesbitt, D. J. (2012). Thermodynamic origins of monovalent-facilitated RNA folding. Biochemistry 51, 37323743.CrossRefGoogle ScholarPubMed
Ikawa, Y., Fukada, K., Watanabe, S., Shiraishi, H. & Inoue, T. (2002). Design, construction, and analysis of a novel class of self-folding RNA. Structure 10, 527534.CrossRefGoogle ScholarPubMed
Ikawa, Y., Naito, D., Aono, N., Shiraishi, H. & Inoue, T. (1999). A conserved motif in group IC3 introns is a new class of GNRA receptor. Nucleic Acids Research 27, 18591865.CrossRefGoogle Scholar
Ikawa, Y., Nohmi, K., Atsumi, S., Shiraishi, H. & Inoue, T. (2001). A comparative study on two GNRA-tetraloop receptors: 11-nt and IC3 motifs. Journal of Biochemistry 130, 251255.Google Scholar
Ishikawa, J., Fujita, Y., Maeda, Y., Furuta, H. & Ikawa, Y. (2011). GNRA/receptor interacting modules: versatile modular units for natural and artificial RNA architectures. Methods 54, 226238.CrossRefGoogle ScholarPubMed
Jaeger, L. & Chworos, A. (2006). The architectonics of programmable RNA and DNA nanostructures. Current Opinion in Structural Biology 16, 531543.CrossRefGoogle ScholarPubMed
Jaeger, L. & Leontis, N. B. (2000). Tecto-RNA: one-dimensional self-assembly through tertiary interactions. Angewandte Chemie-International Edition 39, 25212524.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Jaeger, L., Michel, F. & Westhof, E. (1994). Involvement of a GNRA tetraloop in long-range tertiary interactions. Journal of Molecular Biology 236, 12711276.CrossRefGoogle Scholar
Jaeger, L., Westhof, E. & Leontis, N. B. (2001). TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Research 29, 455463.CrossRefGoogle ScholarPubMed
Jucker, F. M. & Pardi, A. (1995). GNRA tetraloops make a U-Turn. RNA 1, 219222.Google ScholarPubMed
Jucker, F. M., Heus, H. A., Yip, P. F., Moors, E. H. M. & Pardi, A. (1996). A network of heterogeneous hydrogen bonds in GNRA tetraloops. Journal of Molecular Biology 264, 968980.CrossRefGoogle ScholarPubMed
Juneau, K., Podell, E., Harrington, D. J. & Cech, T. R. (2001). Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. Structure 9, 221231.CrossRefGoogle Scholar
Kashiwagi, N., Yamashita, K., Furuta, H. & Ikawa, Y. (2009). Designed RNAs with two peptide-binding units as Artificial templates for native chemical ligation of RNA-binding peptides. Chembiochem 10, 27452752.CrossRefGoogle ScholarPubMed
Keating, K. S., Toor, N. & Pyle, A. M. (2008). The GANC Tetraloop: a novel Motif in the group IIC intron structure. Journal of Molecular Biology 383, 475481.CrossRefGoogle Scholar
Klosterman, P. S., Hendrix, D. K., Tamura, M., Holbrook, S. R. & Brenner, S. E. (2004). Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic Acids Research 32, 23422352.CrossRefGoogle ScholarPubMed
Krasilnikov, A. S., Yang, X. J., Pan, T. & Mondragon, A. (2003). Crystal structure of the specificity domain of ribonuclease P. Nature 421, 760764.CrossRefGoogle ScholarPubMed
Kulshina, N., Baird, N. J. & Ferre-D'amare, A. R. (2009). Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nature Structural and Molecular Biology 16, 12121217.CrossRefGoogle ScholarPubMed
Lambert, D., Leipply, D., Shiman, R. & Draper, D. E. (2009). The influence of monovalent cation size on the stability of RNA tertiary structures. Journal of Molecular Biology 390, 791804.CrossRefGoogle ScholarPubMed
Lee, J. C., Gutell, R. R. & Russell, R. (2006). The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. Journal of Molecular Biology 360, 978988.CrossRefGoogle ScholarPubMed
Leontis, N. B., Lescoute, A. & Westhof, E. (2006). The building blocks and motifs of RNA architecture. Current Opinion in Structural Biology 16, 279287.CrossRefGoogle ScholarPubMed
Maglott, E. J., Goodwin, J. T. & Glick, G. D. (1999). Probing the structure of an RNA tertiary unfolding transition state. Journal of the American Chemical Society 121, 74617462.CrossRefGoogle Scholar
Massire, C., Jaeger, L. & Westhof, E. (1997). Phylogenetic evidence for a new tertiary interaction in bacterial RNase P RNAs. RNA 3, 553556.Google ScholarPubMed
Matsumura, S., Ohmori, R., Saito, H., Ikawa, Y. & Inoue, T. (2009). Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. FEBS Letters 583, 28192826.CrossRefGoogle ScholarPubMed
Michel, F. & Westhof, E. (1990). Modeling of the 3-dimensional architecture of group-I catalytic introns based on comparative sequence analysis. Journal of Molecular Biology 216, 585610.CrossRefGoogle Scholar
Michel, F., Costa, M. & Westhof, E. (2009). The ribozyme core of group II introns: a structure in want of partners. Trends in Biochemical Sciences 34, 189199.CrossRefGoogle ScholarPubMed
Michel, F., Hanna, M., Green, R., Bartel, D. P. & Szostak, J. W. (1989). The guanosine binding-Site of the Tetrahymena ribozyme. Nature 342, 391395.CrossRefGoogle ScholarPubMed
Misra, V. K. & Draper, D. E. (2001). A thermodynamic framework for Mg2+ binding to RNA. Proceedings of the National Academy of Sciences, USA 98, 1245612461.CrossRefGoogle ScholarPubMed
Misra, V. K., Shiman, R. & Draper, D. E. (2003). A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 69, 118136.CrossRefGoogle ScholarPubMed
Mondragon, P. A., Krasilnikov, A. S. & Pan, T. (2003). Structural studies of the specificity domain of ribonuclease P. Biochemistry 42, 11.Google Scholar
Murphy, F. L. & Cech, T. R. (1994). GAAA tetraloop and conserved bulge stabilize tertiary structure of a group-I intron domain. Journal of Molecular Biology 236, 4963.CrossRefGoogle ScholarPubMed
Nasalean, L., Baudrey, S., Leontis, N. B. & Jaeger, L. (2006). Controlling RNA self-assembly to form filaments. Nucleic Acids Research 34, 13811392.CrossRefGoogle ScholarPubMed
Nissen, P., Ippolito, J. A., Ban, N., Moore, P. B. & Steitz, T. A. (2001). RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proceedings of the National Academy of Sciences, USA 98, 48994903.CrossRefGoogle ScholarPubMed
Noller, H. F. (2005). RNA structure: reading the ribosome. Science 309, 15081514.CrossRefGoogle ScholarPubMed
Novikova, I. V., Hassan, B. H., Mirzoyan, M. G. & Leontis, N. B. (2011). Engineering cooperative tecto-RNA complexes having programmable stoichiometries. Nucleic Acids Research 39, 29032917.CrossRefGoogle ScholarPubMed
Ohuchi, S. P., Ikawa, Y. & Nakamura, Y. (2008). Selection of a novel class of RNA-RNA interaction motifs based on the ligase ribozyme with defined modular architecture. Nucleic Acids Research 36, 36003607.CrossRefGoogle ScholarPubMed
Pley, H. W., Flaherty, K. M. & Mckay, D. B. (1994a). 3-Dimensional structure of a hammerhead ribozyme. Nature 372, 6874.CrossRefGoogle Scholar
Pley, H. W., Flaherty, K. M. & Mckay, D. B. (1994b). Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372, 111113.CrossRefGoogle Scholar
Pljevaljcic, G., Millar, D. P. & Deniz, A. A. (2004). Freely diffusing single hairpin ribozymes provide insights into the role of secondary structure and partially folded states in RNA folding. Biophysical Journal 87, 457467.CrossRefGoogle ScholarPubMed
Proctor, D. J., Schaak, J. E., Bevilacqua, J. M., Falzone, C. J. & Bevilacqua, P. C. (2002). Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. Biochemistry 41, 1206212075.CrossRefGoogle ScholarPubMed
Qin, H., Sosnick, T. R. & Pan, T. (2001a). Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA. Biochemistry 40, 1120211210.CrossRefGoogle ScholarPubMed
Qin, P. Z., Butcher, S. E., Feigon, J. & Hubbell, W. L. (2001b). Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry 40, 69296936.CrossRefGoogle ScholarPubMed
Qin, P. Z., Feigon, J. & Hubbell, W. L. (2005). Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg2+-dependent docking of a GAAA tetraloop. Journal of Molecular Biology 351, 18.CrossRefGoogle Scholar
Ramakrishnan, V. (2002). Ribosome structure and the mechanism of translation. Cell 108, 557572.CrossRefGoogle ScholarPubMed
Ramos, R. & Martinez-Salas, E. (1999). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5, 13741383.CrossRefGoogle ScholarPubMed
Regulski, E. E., Moy, R. H., Weinberg, Z., Barrick, J. E., Yao, Z., Ruzzo, W. L. & Breaker, R. R. (2008). A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Molecular Microbiology 68, 918932.CrossRefGoogle ScholarPubMed
Reiter, N. J., Osterman, A., Torres-Larios, A., Swinger, K. K., Pan, T. & Mondragon, A. (2010). Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468, 784789.CrossRefGoogle ScholarPubMed
Santalucia, J., Kierzek, R. & Turner, D. H. (1992). Context dependence of hydrogen-bond free-energy revealed by substitutions in an RNA hairpin. Science 256, 217219.CrossRefGoogle Scholar
Sattin, B. D., Zhao, W., Travers, K., Chut, S. & Herschlag, D. (2008). Direct measurement of tertiary contact cooperativity in RNA folding. Journal of the American Chemical Society 130, 60856087.CrossRefGoogle ScholarPubMed
Serra, M. J., Turner, D. H., Michael, L. J. & Ackers, G. K. (1995). Predicting thermodynamic properties of RNA. Methods in Enzymology 259, 242261.CrossRefGoogle ScholarPubMed
Shcherbakova, I. & Brenowitz, M. (2005). Perturbation of the hierarchical folding of a large RNA by the destabilization of its scaffold's tertiary structure. Journal of Molecular Biology 354, 483496.CrossRefGoogle ScholarPubMed
Shiohara, T., Saito, H. & Inoue, T. (2009). A designed RNA selection: establishment of a stable complex between a target and selectant RNA via two coordinated interactions. Nucleic Acids Research 37, e23.CrossRefGoogle ScholarPubMed
Silverman, S. K. & Cech, T. R. (1999). Energetics and cooperativity of tertiary hydrogen bonds in RNA structure. Biochemistry 38, 86918702.CrossRefGoogle ScholarPubMed
Silverman, S. K. & Cech, T. R. (2001). An early transition state for folding of the P4-P6 RNA domain. RNA 7, 161166.CrossRefGoogle ScholarPubMed
Smith, K. D., Lipchock, S. V., Ames, T. D., Wang, J. M., Breaker, R. R. & Strobel, S. A. (2009). Structural basis of ligand binding by a c-di-GMP riboswitch. Nature Structural and Molecular Biology 16, 1218U1227.CrossRefGoogle ScholarPubMed
Solomatin, S. V., Greenfeld, M., Chu, S. & Herschlag, D. (2010). Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463, 681686.CrossRefGoogle ScholarPubMed
Sudarsan, N., Lee, E. R., Weinberg, Z., Moy, R. H., Kim, J. N., Link, K. H. & Breaker, R. R. (2008). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411413.CrossRefGoogle ScholarPubMed
Szewczak, A. A., Podell, E. R., Bevilacqua, P. C. & Cech, T. R. (1998). Thermodynamic stability of the P4-P6 domain RNA tertiary structure measured by temperature gradient gel electrophoresis. Biochemistry 37, 1116211170.CrossRefGoogle ScholarPubMed
Tamura, M. & Holbrook, S. R. (2002). Sequence and structural conservation in RNA ribose zippers. Journal of Molecular Biology 320, 455474.CrossRefGoogle ScholarPubMed
Tan, E., Wilson, T. J., Nahas, M. K., Clegg, R. M., Lilley, D. M. J. & Ha, T. (2003). A four-way junction accelerates hairpin ribozyme folding via a discrete intermediate. Proceedings of the National Academy of Sciences, USA 100, 93089313.CrossRefGoogle Scholar
Tinoco, I. & Bustamante, C. (1999). How RNA folds. Journal of Molecular Biology 293, 271281.CrossRefGoogle ScholarPubMed
Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. (2008). Crystal structure of a self-spliced group II intron. Science 320, 7782.CrossRefGoogle ScholarPubMed
Torres-Larios, A., Swinger, K. K., Pan, T. & Mondragon, A. (2006). Structure of ribonuclease P – a universal ribozyme. Current Opinion in Structural Biology 16, 327335.CrossRefGoogle ScholarPubMed
Treiber, D. K. & Williamson, J. R. (2001). Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction. Journal of Molecular Biology 305, 1121.CrossRefGoogle ScholarPubMed
Vander Meulen, K. A. & Butcher, S. E. (2012). Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Research 40, 21402151.CrossRefGoogle ScholarPubMed
Vander Meulen, K. A., Davis, J. H., Foster, T. R., Record, T. & Butcher, S. E. (2008). Thermodynamics and folding pathway of tetraloop receptor-mediated RNA helical packing. Journal of Molecular Biology 384, 702717.CrossRefGoogle ScholarPubMed
Venditti, V., Clos, L., Niccolai, N. & Butcher, S. E. (2009). Minimum-energy path for a U6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. Journal of Molecular Biology 391, 894905.CrossRefGoogle ScholarPubMed
Wang, Y. X., Zuo, X. B., Wang, J. B., Yu, P. & Butcher, S. E. (2010). Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Methods 52, 180191.CrossRefGoogle ScholarPubMed
Weinberg, Z., Barrick, J. E., Yao, Z., Roth, A., Kim, J. N., Gore, J., Wang, J. X., Lee, E. R., Block, K. F., Sudarsan, N., Neph, S., Tompa, M., Ruzzo, W. L. & Breaker, R. R. (2007). Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline. Nucleic Acids Research 35, 48094819.CrossRefGoogle ScholarPubMed
Westhof, E., Jaeger, L., Lehnert, V., Massire, C. & Michel, F. (1998a). The modular assembly of large RNAs: 3-D models of self-splicing introns and bacterial RNase P. FASEB Journal 12, 50.Google Scholar
Westhof, E., Masquida, B. & Jaeger, L. (1996). RNA tectonics: towards RNA design. Folding and Design 1, R78R88.CrossRefGoogle ScholarPubMed
Westhof, E., Masquida, B. & Jaeger, L. (1998b). RNA tectonics and modular modeling of RNA. In Molecular Modeling of Nucleic Acids. Washington, DC: American Chemical Society, vol. 682, pp. 346358.CrossRefGoogle Scholar
Winkler, W. C. & Breaker, R. R. (2005). Regulation of bacterial gene expression by riboswitches. Annual Review of Microbiology 59, 487517.CrossRefGoogle ScholarPubMed
Woese, C. R., Winker, S. & Gutell, R. R. (1990). Architecture of ribosomal-RNA: constraints on the sequence of Tetra-loops. Proceedings of the National Academy of Sciences, USA 87, 84678471.CrossRefGoogle ScholarPubMed
Xie, Z., Srividya, N., Sosnick, T. R., Pan, T. & Scherer, N. F. (2004). Single-molecule studies highlight conformational heterogeneity in the early folding steps of a large ribozyme. Proceedings of the National Academy of Sciences, USA 101, 534539.CrossRefGoogle ScholarPubMed
Xin, Y. R., Laing, C., Leontis, N. B. & Schlick, T. (2008). Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA 14, 24652477.CrossRefGoogle ScholarPubMed
Young, B. T. & Silverman, S. K. (2002). The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain. Biochemistry 41, 1227112276.CrossRefGoogle ScholarPubMed
Zhao, Q., Huang, H. C., Nagaswamy, U., Xia, Y., Gao, X. & Fox, G. E. (2012). UNAC tetraloops: to what extent do they mimic GNRA tetraloops?. Biopolymers 97 617628.CrossRefGoogle ScholarPubMed
Zhou, H. X. (2010). Rate theories for biologists. Quarterly Reviews of Biophysics 43, 219293.CrossRefGoogle ScholarPubMed
Zhuang, X. W., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T. J., Herschlag, D. & Chu, S. (2000). A single-molecule study of RNA catalysis and folding. Science 288, 20482051.CrossRefGoogle ScholarPubMed
Zhuang, X. W., Kim, H., Pereira, M. J. B., Babcock, H. P., Walter, N. G. & Chu, S. (2002). Correlating structural dynamics and function in single ribozyme molecules. Science 296, 14731476.CrossRefGoogle ScholarPubMed
Zuo, X. B., Wang, J. B., Foster, T. R., Schwieters, C. D., Tiede, D. M., Butcher, S. E. & Wang, Y. X. (2008). Global molecular structure and interfaces: refining an RNA: RNA complex structure using solution X-ray scattering data. Journal of the American Chemical Society 130, 32923293.CrossRefGoogle ScholarPubMed