Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T02:19:50.306Z Has data issue: false hasContentIssue false

Structure of viruses: a short history

Published online by Cambridge University Press:  29 July 2013

Michael G. Rossmann*
Affiliation:
Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA
*
*Author for correspondence: M. G. Rossmann, Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN 47907-2032, USA. Tel.:(765) 494-4911; Fax: (765) 496-1189; Email: [email protected]

Abstract

This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work.

The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a ‘jelly-roll’ fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aathavan, K., Politzer, A. T., Kaplan, A., Moffitt, J. R., Chemla, Y. R., Grimes, S., Jardine, P. J., Anderson, D. L. & Bustamante, C. (2009). Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461, 669673.CrossRefGoogle Scholar
Abad-Zapatero, C., Abdel-Meguid, S. S., Johnson, J. E., Leslie, A. G. W., Rayment, I., Rossmann, M. G., Suck, D. & Tsukihara, T. (1980). Structure of southern bean mosaic virus at 2·8 Å resolution. Nature 286, 3339.CrossRefGoogle ScholarPubMed
Abrescia, N. G., Grimes, J. M., Kivela, H. M., Assenberg, R., Sutton, G. C., Butcher, S. J., Bamford, J. K., Bamford, D. H. & Stuart, D. I. (2008). Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. Molecular Cell 31, 749761.CrossRefGoogle ScholarPubMed
Abrescia, N. G. A., Cockburn, J. J. B., Grimes, J. M., Sutton, G. C., Diprose, J. M., Butcher, S. J., Fuller, S. D., San Martin, C., Burnett, R. M., Stuart, D. I., Bamford, D. H. & Bamford, J. K. H. (2004). Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432, 6874.CrossRefGoogle ScholarPubMed
Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. (1989). The three-dimensional structure of foot-and-mouth disease virus at 2·9 Å resolution. Nature 337, 709716.CrossRefGoogle ScholarPubMed
Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. (1984). Cryo-electron microscopy of viruses. Nature 308, 3236.CrossRefGoogle ScholarPubMed
Agbandje, M., McKenna, R., Rossmann, M. G., Strassheim, M. L. & Parrish, C. R. (1993). Structure determination of feline panleukopenia virus empty particles. Proteins 16, 155171.CrossRefGoogle ScholarPubMed
Agbandje-McKenna, M., Llamas-Saiz, A. L., Wang, F., Tattersall, P. & Rossmann, M. G. (1998). Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure 6, 13691381.CrossRefGoogle ScholarPubMed
Åkervall, K., Strandberg, B., Rossmann, M. G., Bengtsson, U., Fridborg, K., Johannisen, H., Kannan, K. K., Lövgren, S., Petef, G., Öberg, B., Eaker, D., Hjertén, S., Rydén, L. & Moring, I. (1972). X-ray diffraction studies of the structure of satellite tobacco necrosis virus. Cold Spring Harbor Symposia on Quantitative Biology 36, 469483.CrossRefGoogle ScholarPubMed
Aksyuk, A. A., Kurochkina, L. P., Fokine, A., Forouhar, F., Mesyanzhinov, V. V., Tong, L. & Rossmann, M. G. (2011). Structural conservation of the Myoviridae phage tail sheath protein fold. Structure 19, 18851894.CrossRefGoogle ScholarPubMed
Aksyuk, A. A., Leiman, P. G., Kurochkina, L. P., Schneider, M. M., Kostyuchenko, V. A., Mesyanzhinov, V. V. & Rossmann, M. G. (2009a). The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO Journal 28, 821829.CrossRefGoogle ScholarPubMed
Aksyuk, A. A., Leiman, P. G., Shneider, M. M., Mesyanzhinov, V. V. & Rossmann, M. G. (2009b). The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate. Structure 17, 800808.CrossRefGoogle ScholarPubMed
Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W. & Heinz, F. X. (2001). Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. Journal of Virology 75, 42684275.CrossRefGoogle ScholarPubMed
Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W., Kunz, C. & Heinz, F. X. (1995). Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. Journal of Virology 69, 695700.CrossRefGoogle ScholarPubMed
Allison, S. L., Stiasny, K., Stadler, K., Mandl, C. W. & Heinz, F. X. (1999). Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E. Journal of Virology 73, 56055612.CrossRefGoogle ScholarPubMed
Argos, P. & Rossmann, M. G. (1974). Determining heavy-atom positions using non-crystallographic symmetry. Acta Crystallographica Section A 30, 672677.CrossRefGoogle Scholar
Arndt, U. W. & Wonacott, A. J. (1977). The Rotation Method in Crystallography: Data Collection from Macromolecular Crystals. Amsterdam: North-Holland.Google Scholar
Arnold, E., Himmel, D. M. & Rossmann, M. G. (2012). International Tables for Crystallography, Volume F, Crystallography of Biological Macromolecules. West Sussex, UK: John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Arnold, E., Vriend, G., Luo, M., Griffith, J. P., Kamer, G., Erickson, J. W., Johnson, J. E. & Rossmann, M. G. (1987). The structure determination of a common cold virus, human rhinovirus 14. Acta Crystallographica Section A 43, 346361.CrossRefGoogle Scholar
Athappilly, F. K., Murali, R., Rux, J. J., Cai, Z. & Burnett, R. M. (1994). The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2·9 Å resolution. Journal of Molecular Biology 242, 430455.CrossRefGoogle ScholarPubMed
Baker, M. L., Jiang, W., Rixon, F. J. & Chiu, W. (2005). Common ancestry of herpesvirus and tailed DNA bacteriophages. Journal of Virology 79, 1496714970.CrossRefGoogle ScholarPubMed
Baker, T. S., Caspar, D. L. & Murakami, W. T. (1983). Polyoma virus ‘hexamer’ tubes consist of paired pentamers. Nature 303, 446448.CrossRefGoogle ScholarPubMed
Baker, T. S., Newcomb, W. W., Olson, N. H., Cowsert, L. M., Olson, C. & Brown, J. C. (1991). Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophysical Journal 60, 14451456.CrossRefGoogle ScholarPubMed
Bamford, D. H., Grimes, J. M. & Stuart, D. I. (2005). What does structure tell us about virus evolution? Current Opinion in Structural Biology 15, 655663.CrossRefGoogle ScholarPubMed
Bartual, S. G., Otero, J. M., Garcia-Doval, C., Llamas-Saiz, A. L., Kahn, R., Fox, G. C. & van Raaij, M. J. (2010). Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proceedings of the National Academy of Sciences of the United States of America 107, 2028720292.CrossRefGoogle ScholarPubMed
Battisti, A. J., Meng, G., Winkler, D. C., McGinnes, L. W., Plevka, P., Steven, A. C., Morrison, T. G. & Rossmann, M. G. (2012). Structure and assembly of a paramyxovirus matrix protein. Proceedings of the National Academy of Sciences of the United States of America 109, 1399614000.CrossRefGoogle ScholarPubMed
Bella, J., Kolatkar, P. R., Marlor, C. W., Greve, J. M. & Rossmann, M. G. (1998). The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proceedings of the National Academy of Sciences of the United States of America 95, 41404145.CrossRefGoogle ScholarPubMed
Bella, J., Kolatkar, P. R., Marlor, C. W., Greve, J. M. & Rossmann, M. G. (1999). The structure of the two amino-terminal domains of human intercellular adhesion molecule-1 suggests how it functions as a rhinovirus receptor. Virus Research 62, 107117.CrossRefGoogle ScholarPubMed
Benson, S. D., Bamford, J. K. H., Bamford, D. H. & Burnett, R. M. (2004). Does common architecture reveal a viral lineage spanning all three domains of life? Molecular Cell 16, 673685.CrossRefGoogle ScholarPubMed
Berget, P. B. & King, J. (1978). Isolation and characterization of precursors in T4 baseplate assembly. The complex of gene 10 and gene 11 products. Journal of Molecular Biology 124, 469486.CrossRefGoogle ScholarPubMed
Bernal, J. D. & Fankuchen, I. (1937). Structure types of protein crystals from virus-infected plants. Nature 139, 923924.CrossRefGoogle Scholar
Bernal, J. D. & Fankuchen, I. (1941). X-Ray and crystallographic studies of plant virus preparations : I. Introduction and preparation of specimens. II. Modes of aggregation of the virus particles. III. (1) The structure of the particles and (2) biological implications. Journal of General Physiology 25, 111165.CrossRefGoogle Scholar
Bloomer, A. C., Champness, J. N., Bricogne, G., Staden, R. & Klug, A. (1978). Protein disk of tobacco mosaic virus at 2·8 Å resolution showing the interactions within and between subunits. Nature 276, 362368.CrossRefGoogle ScholarPubMed
Bostina, M., Bubeck, D., Schwartz, C., Nicastro, D., Filman, D. J. & Hogle, J. M. (2007). Single particle cryoelectron tomography characterization of the structure and structural variability of poliovirus-receptor-membrane complex at 30 Å resolution. Journal of Structural Biology 160, 200210.CrossRefGoogle ScholarPubMed
Bostina, M., Levy, H., Filman, D. J. & Hogle, J. M. (2011). Poliovirus RNA is released from the capsid near a twofold symmetry axis. Journal of Virology 83, 776783.CrossRefGoogle Scholar
Bragg, W. H. & Bragg, W. L. (1913). The reflection of X-rays in crystals. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 88, 428438.Google Scholar
Bragg, W. L. (1913). The structure of some crystals as indicated by their diffraction of X-rays. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 89, 248277.Google Scholar
Brenner, S. & Horne, R. W. (1959). A negative staining method for high resolution electron microscopy of viruses. Biochimica et Biophysica Acta 34, 103110.CrossRefGoogle ScholarPubMed
Bressanelli, S., Stiasny, K., Allison, S. L., Stura, E. A., Duquerroy, S., Lescar, J., Heinz, F. X. & Rey, F. A. (2004). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO Journal 23, 728738.CrossRefGoogle ScholarPubMed
Brinton, M. A. (2002). The molecular biology of West Nile virus: a new invader of the western hemisphere. Annual Review of Microbiology 56, 371402.CrossRefGoogle ScholarPubMed
Brown, J. C. & Newcomb, W. W. (2011). Herpesvirus capsid assembly: insights from structural analysis. Current Opinion in Virology 1, 142149.CrossRefGoogle ScholarPubMed
Browning, C., Shneider, M. M., Bowman, V. D., Schwarzer, D. & Leiman, P. G. (2012). Phage pierces the host cell membrane with the iron-loaded spike. Structure 20, 326339.CrossRefGoogle ScholarPubMed
Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. & Rossmann, M. G. (1974). Structure determination of crystalline lobster D-glyceraldehyde-3-phosphate dehydrogenase. Journal of Molecular Biology 82, 563585.CrossRefGoogle ScholarPubMed
Burke, D. S. & Monath, T. P. (2001). Flaviviruses. In Fields Virology (eds. Knipe, D. M. & Howley, P. M.), pp. 10431125. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Butler, P. J. & Klug, A. (1972). Assembly of tobacco mosaic virus in vitro: effect of state of polymerization of the protein component. Proceedings of the National Academy of Sciences of the United States of America 69, 29502953.CrossRefGoogle ScholarPubMed
Büttner, C. R., Chechik, M., Ortiz-Lombardia, M., Smits, C., Ebong, I. O., Chechik, V., Jeschke, G., Dykeman, E., Benini, S., Robinson, C. V., Alonso, J. C. & Antson, A. A. (2012). Structural basis for DNA recognition and loading into a viral packaging motor. Proceedings of the National Academy of Sciences of the United States of America 109, 811816.CrossRefGoogle ScholarPubMed
Calendar, R. (2006). The Bacteriophages (ed. Calendar, R.). New York: Oxford University Press.Google Scholar
Canaan, S., Zadori, Z., Ghomashchi, F., Bollinger, J., Sadilek, M., Moreau, M. E., Tijssen, P. & Gelb, M. H. (2004). Interfacial enzymology of parvovirus phospholipases A2. The Journal of Biological Chemistry 279, 1450214508.CrossRefGoogle ScholarPubMed
Caspar, D. L. D. (1956). Structure of bushy stunt virus. Nature 177, 475476.CrossRefGoogle ScholarPubMed
Caspar, D. L. D. & Klug, A. (1962). Physical principles in the construction of regular viruses. Cold Spring Harbor Symposia on Quantitative Biology 27, 124.CrossRefGoogle ScholarPubMed
Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P. G. & Klug, A. (1976). The structure of the protein disk of tobacco mosaic virus to 5 Å resolution. Nature 259, 2024.CrossRefGoogle Scholar
Chapman, M. S. & Rossmann, M. G. (1996). Structural refinement of the DNA-containing capsid of canine parvovirus using RSRef, a resolution-dependent stereochemically restrained real-space refinement method. Acta Crystallographica Section D: Biological Crystallography 52, 129142.CrossRefGoogle ScholarPubMed
Chapman, M. S., Tsao, J. & Rossmann, M. G. (1992). Ab initio phase determination for spherical viruses: parameter determination for spherical-shell models. Acta Crystallogaphica Section A 48, 301312.CrossRefGoogle ScholarPubMed
Chen, Z. G., Stauffacher, C., Li, Y., Schmidt, T., Bomu, W., Kamer, G., Shanks, M., Lomonossoff, G. & Johnson, J. E. (1989). Protein-RNA interactions in an icosahedral virus at 3·0 Å resolution. Science 245, 154159.CrossRefGoogle Scholar
Cheng, R. H., Kuhn, R. J., Olson, N. H., Rossmann, M. G., Choi, H. K., Smith, T. J. & Baker, T. S. (1995). Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80, 621630.CrossRefGoogle Scholar
Cherrier, M. V., Kostyuchenko, V. A., Xiao, C., Bowman, V. D., Battisti, A. J., Yan, X., Chipman, P. R., Baker, T. S., Van Etten, J. L. & Rossmann, M. G. (2009). An icosahedral algal virus has a complex unique vertex decorated by a spike. Proceedings of the National Academy of Sciences of the United States of America 106, 1108511089.CrossRefGoogle Scholar
Choi, H. K., Tong, L., Minor, W., Dumas, P., Boege, U., Rossmann, M. G. & Wengler, G. (1991). Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354, 3743.CrossRefGoogle ScholarPubMed
Cockburn, J. J. B., Abrescia, N. G. A., Grimes, J. M., Sutton, G. C., Diprose, J. M., Benevides, J. M., Thomas, G. J. Jr, Bamford, J. K. H., Bamford, D. H. & Stuart, D. I. (2004). Membrane structure and interactions with protein and DNA in bacteriophage PRD1. Nature 432, 122125.CrossRefGoogle ScholarPubMed
Cohen, D. N., Sham, Y. Y., Haugstad, G. D., Xiang, Y., Rossmann, M. G., Anderson, D. L. & Popham, D. L. (2009). Shared catalysis in virus entry and bacterial cell wall depolymerization. Journal of Molecular Biology 387, 607618.CrossRefGoogle ScholarPubMed
Colman, P. M., Varghese, J. N. & Laver, W. G. (1983). Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303, 4144.CrossRefGoogle ScholarPubMed
Coombs, D. H. & Arisaka, F. (1994). T4 tail structure and function. In Molecular Biology of Bacteriophage T4 (ed. Karam, J. D.), pp. 259281. Washington, DC: American Society for Microbiology.Google Scholar
Crick, F. H. C. & Watson, J. D. (1956). Structure of small viruses. Nature 177, 473475.CrossRefGoogle ScholarPubMed
Crick, F. H. C. & Watson, J. D. (1957). Virus structure: general principles. In Ciba Foundation Symposium on the Nature of Viruses (eds. Wolstenholme, G. E. W., Millar, E. C. P. and Ciba Foundation), pp. 513. London: J. & A. Churchill.Google Scholar
Crowfoot, D. & Schmidt, G. M. J. (1945). X-ray crystallographic measurements on a single crystal of a tobacco necrosis virus derivative. Nature 155, 504505.CrossRefGoogle Scholar
Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J. & Klug, A. (1970). Three-dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226, 421425.CrossRefGoogle ScholarPubMed
Crowther, R. A., Lenk, E. V., Kikuchi, Y. & King, J. (1977). Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. Journal of Molecular Biology 116, 489523.CrossRefGoogle ScholarPubMed
Davis, C. W., Nguyen, H. Y., Hanna, S. L., Sánchez, M. D., Doms, R. W. & Pierson, T. C. (2006). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. Journal of Virology 80, 12901301.CrossRefGoogle ScholarPubMed
Dessen, A., Volchkov, V., Dolnik, O., Klenk, H.-D. & Weissenhorn, W. (2000). Crystal structure of the matrix protein VP40 from Ebola virus. EMBO Journal 19, 42284236.CrossRefGoogle ScholarPubMed
DiMattia, M. A., Nam, H. J., Van Vliet, K., Mitchell, M., Bennett, A., Gurda, B. L., McKenna, R., Olson, N. H., Sinkovits, R. S., Potter, M., Byrne, B. J., Aslanidi, G., Zolotukhin, S., Muzyczka, N., Baker, T. S. & Agbandje-McKenna, M. (2012). Structural insight into the unique properties of adeno-associated virus serotype 9. Journal of Virology 86, 69476958.CrossRefGoogle ScholarPubMed
Diprose, J. M., Grimes, J. M., Sutton, G. C., Burroughs, J. N., Meyer, A., Maan, S., Mertens, P. P. & Stuart, D. I. (2002). The core of bluetongue virus binds double-stranded RNA. Journal of Virology 76, 95339536.CrossRefGoogle ScholarPubMed
Dokland, T., McKenna, R., Ilag, L. L., Bowman, B. R., Incardona, N. L., Fane, B. A. & Rossmann, M. G. (1997). Structure of a viral procapsid with molecular scaffolding. Nature 389, 308313.CrossRefGoogle ScholarPubMed
Dokland, T., Walsh, M., Mackenzie, J. M., Khromykh, A. A., Ee, K.-H. & Wang, S. (2004). West Nile virus core protein: tetramer structure and ribbon formation. Structure 12, 11571163.CrossRefGoogle ScholarPubMed
Dorsch, S., Liebisch, G., Kaufmann, B., von Landenberg, P., Hoffmann, J. H., Drobnik, W. & Modrow, S. (2002). The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity. Journal of Virology 76, 20142018.CrossRefGoogle ScholarPubMed
Dubochet, J., Adrian, M., Chang, J. J., Homo, J. C., Lepault, J., McDowall, A. W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quarterly Reviews of Biophysics 21, 129228.CrossRefGoogle ScholarPubMed
Eiserling, F. A. & Black, L. W. (1994). Pathways in T4 morphogenesis. In Molecular Biology of Bacteriophage T4 (eds. Karam, J. D., Drake, J. W., Kreuzer, K. N., Mosig, G., Hall, D. H., Eiserling, F. A., Black, L. W., Spicer, E. K., Kutter, E., Carlson, C. & Miller, E. S.), pp. 209212. Washington, DC: American Society for Microbiology.Google Scholar
Elshuber, S., Allison, S. L., Heinz, F. X. & Mandl, C. W. (2003). Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. Journal of General Virology 84, 183191.CrossRefGoogle ScholarPubMed
Ferlenghi, I., Clarke, M., Ruttan, T., Allison, S. L., Schalich, J., Heinz, F. X., Harrison, S. C., Rey, F. A. & Fuller, S. D. (2001). Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Molecular Cell 7, 593602.CrossRefGoogle ScholarPubMed
Filman, D. J., Syed, R., Chow, M., Macadam, A. J., Minor, P. D. & Hogle, J. M. (1989). Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO Journal 18, 15671579.CrossRefGoogle Scholar
Finch, J. T. & Klug, A. (1959). Structure of poliomyelitis virus. Nature 183, 17091714.CrossRefGoogle ScholarPubMed
Fokine, A., Battisti, A. J., Kostyuchenko, V. A., Black, L. W. & Rossmann, M. G. (2006). Cryo-EM structure of a bacteriophage T4 gp24 bypass mutant: the evolution of pentameric vertex proteins in icosahedral viruses. Journal of Structural Biology 154, 255259.CrossRefGoogle ScholarPubMed
Fokine, A., Chipman, P. R., Leiman, P. G., Mesyanzhinov, V. V., Rao, V. B. & Rossmann, M. G. (2004). Molecular architecture of the prolate head of bacteriophage T4. Proceedings of the National Academy of Sciences of the United States of America 101, 60036008.CrossRefGoogle ScholarPubMed
Fokine, A., Miroshnikov, K. A., Shneider, M. M., Mesyanzhinov, V. V. & Rossmann, M. G. (2008). Structure of the bacteriophage phiKZ lytic transglycosylase, gp144. Journal of Biological Chemistry 283, 72427250.CrossRefGoogle Scholar
Fokine, A., Zhang, Z., Kanamaru, S., Bowman, V. D., Aksyuk, A. A., Arisaka, F., Rao, V. B. & Rossmann, M. G. (2013). The molecular architecture of the bacteriophage T4 neck. Journal of Molecular Biology 425, 17311744.CrossRefGoogle Scholar
Franklin, R. E. & Holmes, K. C. (1958). Tobacco mosaic virus: application of the method of isomorphous replacement to the determination of the helical parameters and radial density distribution. Acta Crystallographica 11, 213220.CrossRefGoogle Scholar
Franklin, R. E., Klug, A. & Holmes, K. C. (1957). X-ray diffraction studies of the structure and morphology of tobacco mosaic virus. In Ciba Foundation Symposium on the Nature of Viruses (eds. Wolstenholme, G. E. W., Millar, E. C. P. and Ciba Foundation), pp. 3955. London: J. & A. Churchill.Google Scholar
Fu, C. Y. & Johnson, J. E. (2012). Structure and cell biology of archaeal virus STIV. Current Opinion in Virology 2, 122127.CrossRefGoogle ScholarPubMed
Fuller, D. N., Raymer, D. M., Kottadiel, V. I., Rao, V. B. & Smith, D. E. (2007). Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proceedings of the National Academy of Sciences of the United States of America 104, 1686816873.CrossRefGoogle ScholarPubMed
Fuller, S. D. (1987). The T=4 envelope of Sindbis virus is organized by interactions with a complementary T=3 capsid. Cell 48, 923934.CrossRefGoogle Scholar
Gaykema, W. P., Volbeda, A. & Hol, W. G. (1986). Structure determination of Panulirus interruptus haemocyanin at 3·2 Å resolution. Successful phase extension by sixfold density averaging. Journal of Molecular Biology 187, 255275.CrossRefGoogle ScholarPubMed
Gibbons, D. L. & Kielian, M. (2002). Molecular dissection of the Semliki Forest virus homotrimer reveals two functionally distinct regions of the fusion protein. Journal of Virology 76, 11941205.CrossRefGoogle ScholarPubMed
Greve, J. M., Davis, G., Meyer, A. M., Forte, C. P., Yost, S. C., Marlor, C. W., Kamarck, M. E. & McClelland, A. (1989). The major human rhinovirus receptor is ICAM-1. Cell 56, 839847.CrossRefGoogle ScholarPubMed
Grimes, J. M., Burroughs, J. N., Gouet, P., Diprose, J. M., Malby, R., Ziéntara, S., Mertens, P. P. C. & Stuart, D. I. (1998). The atomic structure of the bluetongue virus core. Nature 395, 470478.CrossRefGoogle ScholarPubMed
Gubler, D. J. (1988). Dengue. In Epidemiology of Arthropod-Borne Viral Diseases (ed. Monath, T. P.), pp. 223260. Boca Raton, FL: CRC Press.Google Scholar
Guirakhoo, F., Bolin, R. A. & Roehrig, J. T. (1992). The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology 191, 921931.CrossRefGoogle ScholarPubMed
Guirakhoo, F., Heinz, F. X., Mandl, C. W., Holzmann, H. & Kunz, C. (1991). Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. Journal of General Virology 72, 13231329.CrossRefGoogle ScholarPubMed
Hafenstein, S., Bowman, V. D., Sun, T., Nelson, C. D. S., Palermo, L., Chipman, P. R., Battisti, A. J., Parrish, C. R. & Rossmann, M. G. (2009). The structural analysis of eight different FAb interacting with parvovirus capsids reveals alternative mechanisms of neutralization and binding to host range variant capsids. Journal of Virology 83, 55565566.CrossRefGoogle Scholar
Hafenstein, S., Palermo, L. M., Kostyuchenko, V. A., Xiao, C., Morais, M. C., Nelson, C. D. S., Bowman, V. D., Battisti, A. J., Chipman, P. R., Parrish, C. R. & Rossmann, M. G. (2007). Asymmetric binding of transferrin receptor to parvovirus capsids. Proceedings of the National Academy of Sciences of the United States of America 104, 65856589.CrossRefGoogle ScholarPubMed
Harris, A., Forouhar, F., Qiu, S., Sha, B. & Luo, M. (2001). The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289, 3444.CrossRefGoogle ScholarPubMed
Harrison, S. C. (1968). A point-focusing camera for single-crystal diffraction. Journal of Applied Crystallography 1, 8490.CrossRefGoogle Scholar
Harrison, S. C. (2008). Viral membrane fusion. Nature Structural and Molecular Biology 15, 690698.CrossRefGoogle ScholarPubMed
Harrison, S. C. (2010). Virology. Looking inside adenovirus. Science 329, 10261027.CrossRefGoogle ScholarPubMed
Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. (1978). Tomato bushy stunt virus at 2·9 Å resolution. Nature 276, 368373.CrossRefGoogle ScholarPubMed
Harrison, S. C., Strong, R. K., Schlesinger, S. & Schlesinger, M. J. (1992). Crystallization of Sindbis virus and its nucleocapsid. Journal of Molecular Biology 226, 277280.CrossRefGoogle ScholarPubMed
Hatfull, G. F., Pedulla, M. L., Jacobs-Sera, D., Cichon, P. M., Foley, A., Ford, M. E., Gonda, R. M., Houtz, J. M., Hryckowian, A. J., Kelchner, V. A., Namburi, S., Pajcini, K. V., Popovich, M. G., Schleicher, D. T., Simanek, B. Z., Smith, A. L., Zdanowicz, G. M., Kumar, V., Peebles, C. L., Jacobs, W. R. Jr, Lawrence, J. G. & Hendrix, R. W. (2006). Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genetics 2, e92.CrossRefGoogle ScholarPubMed
Hayashi, M. A. (1978). Morphogenesis of the isometric phages. In Cold Spring Harbor Monograph: The Single-Stranded DNA Phages, vol. 8 (eds. Denhardt, D. T., Dressler, D. & Ray, D. S.), pp. 531547. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Hayden, F. G., Herrington, D. T., Coats, T. L., Kim, K. H., Cooper, E. C., Villano, S. A., Liu, S., Hudson, S., Pevear, D. C., Collett, M. & McKinlay, M. A. (2003). Efficacy and safety of oral pleconaril for treatment of picornavirus colds in adults: results of two double-blind, randomized, placebo-controlled trials. Clinical Infectious Diseases 36, 15231532.CrossRefGoogle Scholar
He, Y., Bowman, V. D., Mueller, S., Bator, C. M., Bella, J., Peng, X., Baker, T. S., Wimmer, E., Kuhn, R. J. & Rossmann, M. G. (2000). Interaction of the poliovirus receptor with poliovirus. Proceedings of the National Academy of Sciences of the United States of America 97, 7984.CrossRefGoogle ScholarPubMed
He, Y., Chipman, P. R., Howitt, J., Bator, C. M., Whitt, M. A., Baker, T. S., Kuhn, R. J., Anderson, C. W., Freimuth, P. & Rossmann, M. G. (2001). Interaction of coxsackievirus B3 with the full-length coxsackievirus-adenovirus receptor. Nature Structural Biology 8, 874878.CrossRefGoogle ScholarPubMed
Heinz, F. X., Stiasny, K., Püschner-Auer, G., Holzmann, H., Allison, S. L., Mandl, C. W. & Kunz, C. (1994). Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198, 109117.CrossRefGoogle Scholar
Hermodson, M. A., Abad-Zapatero, C., Abdel-Meguid, S. S., Pundak, S., Rossmann, M. G. & Tremaine, J. H. (1982). Amino acid sequence of southern bean mosaic virus coat protein and its relation to the three-dimensional structure of the virus. Virology 119, 133149.CrossRefGoogle Scholar
Hogle, J. M. (2002). Poliovirus cell entry: common structural themes in viral cell entry pathways. Annual Review of Microbiology 56, 677702.CrossRefGoogle ScholarPubMed
Hogle, J. M., Chow, M. & Filman, D. J. (1985). Three-dimensional structure of poliovirus at 2·9 Å resolution. Science 229, 13581365.CrossRefGoogle ScholarPubMed
Holmes, K. C., Stubbs, G. J., Mandelkow, E. & Gallwitz, U. (1975). Structure of tobacco mosaic virus at 6·7 Å resolution. Nature 254, 192196.CrossRefGoogle ScholarPubMed
Horne, R. W., Brenner, S., Waterson, A. P. & Wildy, P. (1959). The icosahedral form of an adenovirus. Journal of Molecular Biology 1, 8486.CrossRefGoogle Scholar
Hueffer, K., Govindasamy, L., Agbandje-McKenna, M. & Parrish, C. R. (2003). Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses. Journal of Virology 77, 1009910105.CrossRefGoogle ScholarPubMed
Huxley, H. E. & Zubay, G. (1960). The structure of the protein shell of turnip yellow mosaic virus. Journal of Molecular Biology 2, 189196.CrossRefGoogle Scholar
Jiang, W., Chang, J., Jakana, J., Weigele, P., King, J. & Chiu, W. (2006). Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439, 612616.CrossRefGoogle ScholarPubMed
Jiang, W., Li, Z., Zhang, Z., Baker, M. L., Prevelige, P. E. Jr & Chiu, W. (2003). Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nature Structural Biology 10, 131135.CrossRefGoogle ScholarPubMed
Kanamaru, S., Kondabagil, K., Rossmann, M. G. & Rao, V. B. (2004). The functional domains of bacteriophage T4 terminase. Journal of Biological Chemistry 279, 4079540801.CrossRefGoogle ScholarPubMed
Kanamaru, S., Leiman, P. G., Kostyuchenko, V. A., Chipman, P. R., Mesyanzhinov, V. V., Arisaka, F. & Rossmann, M. G. (2002). Structure of the cell-puncturing device of bacteriophage T4. Nature 415, 553557.CrossRefGoogle ScholarPubMed
Kaufmann, B., Baxa, U., Chipman, P. R., Rossmann, M. G., Modrow, S. & Seckler, R. (2005). Parvovirus B19 does not bind to membrane-associated globoside in vitro. Virology 332, 189198.CrossRefGoogle Scholar
Kaufmann, B., Bowman, V. D., Li, Y., Szelei, J., Waddell, P. J., Tijssen, P. & Rossmann, M. G. (2010a). Structure of Penaeus stylirostris densovirus, a shrimp pathogen. Journal of Virology 84, 1128911296.CrossRefGoogle ScholarPubMed
Kaufmann, B., Chipman, P. R., Holdaway, H. A., Johnson, S., Fremont, D. H., Kuhn, R. J., Diamond, M. S. & Rossmann, M. G. (2009). Capturing a flavivirus pre-fusion intermediate. PLoS Pathogens 5, e1000672.CrossRefGoogle ScholarPubMed
Kaufmann, B., Chipman, P. R., Kostyuchenko, V. A., Modrow, S. & Rossmann, M. G. (2008). Visualization of the externalized VP2 N-termini of infectious human parvovirus B19. Journal of Virology 82, 73067312.CrossRefGoogle ScholarPubMed
Kaufmann, B., El-Far, M., Plevka, P., Bowman, V. D., Li, Y., Tijssen, P. & Rossmann, M. G. (2011). Structure of Bombyx mori densovirus 1, a silkworm pathogen. Journal of Virology 85, 46914697.CrossRefGoogle ScholarPubMed
Kaufmann, B., Nybakken, G. E., Chipman, P. R., Zhang, W., Diamond, M. S., Fremont, D. H., Kuhn, R. J. & Rossmann, M. G. (2006). West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America 103, 1240012404.CrossRefGoogle ScholarPubMed
Kaufmann, B., Plevka, P., Kuhn, R. J. & Rossmann, M. G. (2010b). Crystallization and preliminary X-ray diffraction analysis of West Nile virus. Acta Crystallographica Section F 66, 558562.Google ScholarPubMed
Kaufmann, B. & Rossmann, M. G. (2011). Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes and Infection 13, 19.CrossRefGoogle ScholarPubMed
Kaufmann, B., Simpson, A. A. & Rossmann, M. G. (2004). The structure of human parvovirus B19. Proceedings of the National Academy of Sciences of the United States of America 101, 1162811633.CrossRefGoogle ScholarPubMed
Kay, L. E. (1986). W. M. Stanley's crystallization of the tobacco mosaic virus, 1930–1940. Isis 77, 450472.CrossRefGoogle Scholar
Kellenberger, E. (1976). DNA viruses: cooperativity and regulation through conformational changes as features of phage assembly. Philosophical Transactions of the Royal Society of London B: Biological Sciences 276, 313.Google ScholarPubMed
Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H. & Phillips, D. C. (1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662666.CrossRefGoogle ScholarPubMed
Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C. & Shore, V. C. (1960). Structure of myoglobin. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 185, 422427.CrossRefGoogle Scholar
Khayat, R., Tang, L., Larson, E. T., Lawrence, C. M., Young, M. & Johnson, J. E. (2005). Structure of an archaeal virus capsid protein reveals a common ancestry to eukaryotic and bacterial viruses. Proceedings of the National Academy of Sciences of the United States of America 102, 1894418949.CrossRefGoogle ScholarPubMed
Kielian, M. (1995). Membrane fusion and the alphavirus life cycle. Advances in Virus Research 45, 113151.CrossRefGoogle ScholarPubMed
Kielian, M. & Rey, F. A. (2006). Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Reviews Microbiology 4, 6776.CrossRefGoogle ScholarPubMed
Kikuchi, Y. & King, J. (1975). Assembly of the tail of bacteriophage T4. Journal of Supramolecular Structure 3, 2438.CrossRefGoogle ScholarPubMed
Klose, T., Kuznetsov, Y. G., Xiao, C., Sun, S., McPherson, A. & Rossmann, M. G. (2010). The three-dimensional structure of Mimivirus. Intervirology 53, 268273.CrossRefGoogle ScholarPubMed
Klug, A. (1972). Interpretation of the rotation function map of satellite tobacco necrosis virus: octahedral packing of icosahedral particles. Cold Spring Harbor Symposia on Quantitative Biology 36, 483487.CrossRefGoogle ScholarPubMed
Klug, A., Finch, J. T. & Franklin, R. E. (1957). The structure of turnip yellow mosaic virus: X-ray diffraction studies. Biochimica et Biophysica Acta 25, 242252.CrossRefGoogle ScholarPubMed
Kolatkar, P. R., Bella, J., Olson, N. H., Bator, C. M., Baker, T. S. & Rossmann, M. G. (1999). Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO Journal 18, 62496259.CrossRefGoogle ScholarPubMed
Kostyuchenko, V. A., Chipman, P. R., Leiman, P. G., Arisaka, F., Mesyanzhinov, V. V. & Rossmann, M. G. (2005). The tail structure of bacteriophage T4 and its mechanism of contraction. Nature Structural and Molecular Biology 12, 810813.CrossRefGoogle ScholarPubMed
Kostyuchenko, V. A., Leiman, P. G., Chipman, P. R., Kanamaru, S., van Raaij, M. J., Arisaka, F., Mesyanzhinov, V. V. & Rossmann, M. G. (2003). Three-dimensional structure of bacteriophage T4 baseplate. Nature Structural Biology 10, 688693.CrossRefGoogle ScholarPubMed
Kuhn, R. J. (2007). Chapter 30: Togaviridae: the viruses and their replication. In Fields Virology (eds. Knipe, D. M. & Howley, P. M.), pp. 10011021. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., Jones, C. T., Mukhopadhyay, S., Chipman, P. R., Strauss, E. G., Baker, T. S. & Strauss, J. H. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717725.CrossRefGoogle ScholarPubMed
Kuznetsov, Y. G., Xiao, C., Sun, S., Raoult, D., Rossmann, M. G. & McPherson, A. (2010). Atomic force microscopy investigation of the giant mimivirus. Virology 404, 127137.CrossRefGoogle ScholarPubMed
La Scola, B., Audic, S., Robert, C., Jungang, L., de Lamballerie, X., Drancourt, M., Birtles, R., Claverie, J. M. & Raoult, D. (2003). A giant virus in amoebae. Science 299, 2033.CrossRefGoogle ScholarPubMed
Lamb, R. A. & Jardetzky, T. S. (2007). Structural basis of viral invasion: lessons from paramyxovirus F. Current Opinion in Structural Biology 17, 427436.CrossRefGoogle ScholarPubMed
Larson, S. B., Koszelak, S., Day, J., Greenwood, A., Dodds, J. A. & McPherson, A. (1993). Double-helical RNA in satellite tobacco mosaic virus. Nature 361, 179182.CrossRefGoogle ScholarPubMed
Lebedev, A. A., Krause, M. H., Isidro, A. L., Vagin, A. A., Orlova, E. V., Turner, J., Dodson, E. J., Tavares, P. & Antson, A. A. (2007). Structural framework for DNA translocation via the viral portal protein. EMBO Journal 26, 19841994.CrossRefGoogle ScholarPubMed
Lee, K. K. & Johnson, J. E. (2003). Complementary approaches to structure determination of icosahedral viruses. Current Opinion in Structural Biology 13, 558569.CrossRefGoogle ScholarPubMed
Leiman, P. G., Arisaka, F., van Raaij, M. J., Kostyuchenko, V. A., Aksyuk, A. A., Kanamaru, S. & Rossmann, M. G. (2010). Morphogenesis of the T4 tail and tail fibers. Virology Journal 7, 355.CrossRefGoogle ScholarPubMed
Leiman, P. G., Chipman, P. R., Kostyuchenko, V. A., Mesyanzhinov, V. V. & Rossmann, M. G. (2004). Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118, 419429.CrossRefGoogle ScholarPubMed
Leiman, P. G., Kanamaru, S., Mesyanzhinov, V. V., Arisaka, F. & Rossmann, M. G. (2003). Structure and morphogenesis of bacteriophage T4. Cellular and Molecular Life Sciences 60, 23562370.CrossRefGoogle ScholarPubMed
Lerch, T. F., O'Donnell, J. K., Meyer, N. L., Xie, Q., Taylor, K. A., Stagg, S. M. & Chapman, M. S. (2012). Structure of AAV-DJ, a retargeted gene therapy vector: cryo-electron microscopy at 4·5 Å resolution. Structure 20, 13101320.CrossRefGoogle ScholarPubMed
Lescar, J., Roussel, A., Wein, M. W., Navaza, J., Fuller, S. D., Wengler, G., Wengler, G. & Rey, F. A. (2001). The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137148.CrossRefGoogle ScholarPubMed
Li, L., Jose, J., Xiang, Y., Kuhn, R. J. & Rossmann, M. G. (2010). Structural changes of envelope proteins during alphavirus fusion. Nature 468, 705708.CrossRefGoogle ScholarPubMed
Li, L., Lok, S.-M., Yu, I.-M., Zhang, Y., Kuhn, R. J., Chen, J. & Rossmann, M. G. (2008). The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319, 18301834.CrossRefGoogle ScholarPubMed
Liljas, L., Unge, T., Jones, T. A., Fridborg, K., Lövgren, S., Skoglund, U. & Strandberg, B. (1982). Structure of satellite tobacco necrosis virus at 3·0 Å resolution. Journal of Molecular Biology 159, 93108.CrossRefGoogle ScholarPubMed
Lindenbach, B. D. & Rice, C. M. (2001). Flaviviridae: the viruses and their replication. In Fields Virology (eds. Knipe, D. M. & Howley, P. M.), pp. 9911041. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Lindenbach, B. D. & Rice, C. M. (2003). Molecular biology of flaviviruses. Advances in Virus Research 59, 2361.CrossRefGoogle ScholarPubMed
Liu, H., Jin, L., Koh, S. B., Atanasov, I., Schein, S., Wu, L. & Zhou, Z. H. (2010). Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 329, 10381043.CrossRefGoogle ScholarPubMed
Llamas-Saiz, A. L., Agbandje-McKenna, M., Wikoff, W. R., Bratton, J., Tattersall, P. & Rossmann, M. G. (1997). Structure determination of minute virus of mice. Acta Crystallographica Section D: Biological Crystallography 53, 93102.CrossRefGoogle ScholarPubMed
Lorenz, I. C., Allison, S. L., Heinz, F. X. & Helenius, A. (2002). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. Journal of Virology 76, 54805491.CrossRefGoogle Scholar
Lozach, P. Y., Burleigh, L., Staropoli, I., Navarro-Sanchez, E., Harriague, J., Virelizier, J. L., Rey, F. A., Despres, P., Arenzana-Seisdedos, F. & Amara, A. (2005). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. Journal of Biological Chemistry 280, 2369823708.CrossRefGoogle ScholarPubMed
Lu, Y. E., Cassese, T. & Kielian, M. (1999). The cholesterol requirement for Sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. Journal of Virology 73, 42724278.CrossRefGoogle ScholarPubMed
Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E., Rossmann, M. G., Boege, U., Scraba, D. G., Duke, G. M. & Palmenberg, A. C. (1987). The atomic structure of Mengo virus at 3·0 Å resolution. Science 235, 182191.CrossRefGoogle ScholarPubMed
Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J. & Post, C. B. (2004). Solution structure of dengue virus capsid protein reveals another fold. Proceedings of the National Academy of Sciences of the United States of America 101, 34143419.CrossRefGoogle ScholarPubMed
Magdoff, B. S. (1960). Sub-units in southern bean mosaic virus. Nature 185, 673674.CrossRefGoogle ScholarPubMed
Main, P. & Rossmann, M. G. (1966). Relationships among structure factors due to identical molecules in different crystallographic environments. Acta Crystallographica 21, 6772.CrossRefGoogle Scholar
Mancini, E. J., Kainov, D. E., Grimes, J. M., Tuma, R., Bamford, D. H. & Stuart, D. I. (2004). Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 118, 743755.CrossRefGoogle ScholarPubMed
Marsh, M. & Helenius, A. (1989). Virus entry into animal cells. Advances in Virus Research 36, 107151.CrossRefGoogle ScholarPubMed
McKenna, R., Xia, D., Willingmann, P., Ilag, L. L., Krishnaswamy, S., Rossmann, M. G., Olson, N. H., Baker, T. S. & Incardona, N. L. (1992a). Atomic structure of single-stranded DNA bacteriophage ϕX174 and its functional implications. Nature 355, 137143.CrossRefGoogle ScholarPubMed
McKenna, R., Xia, D., Willingmann, P., Ilag, L. L. & Rossmann, M. G. (1992b). Structure determination of the bacteriophage ϕX174. Acta Crystallographica Section B 48, 499511.CrossRefGoogle Scholar
Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America 100, 69866991.CrossRefGoogle ScholarPubMed
Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313319.CrossRefGoogle ScholarPubMed
Modis, Y., Trus, B. L. & Harrison, S. C. (2002). Atomic model of the papillomavirus capsid. EMBO Journal 21, 47544762.CrossRefGoogle ScholarPubMed
Moffitt, J. R., Chemla, Y. R., Aathavan, K., Grimes, S., Jardine, P. J., Anderson, D. L. & Bustamante, C. (2009). Intersubunit coordination in a homomeric ring ATPase. Nature 457, 446450.CrossRefGoogle Scholar
Money, V. A., McPhee, H. K., Mosely, J. A., Sanderson, J. M. & Yeo, R. P. (2009). Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction. Proceedings of the National Academy of Sciences of the United States of America 106, 44414446.CrossRefGoogle ScholarPubMed
Morais, M. C., Choi, K. H., Koti, J. S., Chipman, P. R., Anderson, D. L. & Rossmann, M. G. (2005). Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudo-atomic structure of ϕ29. Molecular Cell 18, 149159.CrossRefGoogle Scholar
Morais, M. C., Koti, J. S., Bowman, V. D., Reyes-Aldrete, E., Anderson, D. L. & Rossmann, M. G. (2008). Defining molecular and domain boundaries in the bacteriophage ϕ29 DNA packaging motor. Structure 16, 12671274.CrossRefGoogle Scholar
Mosig, G. & Eiserling, F. (2006). T4 and related phages: structure and development. In The Bacteriophages (ed. Calendar, R.), pp. 225267. New York: Oxford University Press.Google Scholar
Muckelbauer, J. K., Kremer, M., Minor, I., Tong, L., Zlotnick, A., Johnson, J. E. & Rossmann, M. G. (1995). Structure determination of coxsackievirus B3 to 3·5 Å resolution. Acta Crystallographica Section D: Biological Crystallography 51, 871887.CrossRefGoogle ScholarPubMed
Mukhopadhyay, S., Kim, B.-S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. (2003). Structure of West Nile virus. Science 302, 248.CrossRefGoogle ScholarPubMed
Mukhopadhyay, S., Zhang, W., Gabler, S., Chipman, P. R., Strauss, E. G., Strauss, J. H., Baker, T. S., Kuhn, R. J. & Rossmann, M. G. (2006). Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses. Structure 14, 6373.CrossRefGoogle ScholarPubMed
Nagai, Y., Klenk, H.-D. & Rott, R. (1976). Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus. Virology 72, 494508.CrossRefGoogle ScholarPubMed
Nandhagopal, N., Simpson, A. A., Gurnon, J. R., Yan, X., Baker, T. S., Graves, M. V., Van Etten, J. L. & Rossmann, M. G. (2002). The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus. Proceedings of the National Academy of Sciences of the United States of America 99, 1475814763.CrossRefGoogle ScholarPubMed
Neumann, P., Lieber, D., Meyer, S., Dautel, P., Kerth, A., Kraus, I., Garten, W. & Stubbs, M. T. (2009). Crystal structure of the Borna disease virus matrix protein (BDV-M) reveals ssRNA binding properties. Proceedings of the National Academy of Sciences of the United States of America 106, 37103715.CrossRefGoogle ScholarPubMed
Nixon, H. L. & Gibbs, A. J. (1960). Electron microscope observations on the structure of turnip yellow mosaic virus. Journal of Molecular Biology 2, 197200.CrossRefGoogle Scholar
Olia, A. S., Prevelige, P. E. Jr, Johnson, J. E. & Cingolani, G. (2011). Three-dimensional structure of a viral genome-delivery portal vertex. Nature Structural and Molecular Biology 18, 597603.CrossRefGoogle ScholarPubMed
Oliveira, M. A., Zhao, R., Lee, W., Kremer, M. J., Minor, I., Rueckert, R. R., Diana, G. D., Pevear, D. C., Dutko, F. J., McKinlay, M. A. & Rossmann, M. G. (1993). The structure of human rhinovirus 16. Structure 1, 5168.CrossRefGoogle ScholarPubMed
Olson, N. H., Kolatkar, P. R., Oliveira, M. A., Cheng, R. H., Greve, J. M., McClelland, A., Baker, T. S. & Rossmann, M. G. (1993). Structure of a human rhinovirus complexed with its receptor molecule. Proceedings of the National Academy of Sciences of the United States of America 90, 507511.CrossRefGoogle ScholarPubMed
Padron, E., Bowman, V., Kaludov, N., Govindasamy, L., Levy, H., Nick, P., McKenna, R., Muzyczka, N., Chiorini, J. A., Baker, T. S. & Agbandje-McKenna, M. (2005). Structure of adeno-associated virus type 4. Journal of Virology 79, 50475058.CrossRefGoogle ScholarPubMed
Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G. & North, A. C. T. (1960). Structure of haemoglobin. A three-dimensional Fourier synthesis at 5·5-Å resolution, obtained by X-ray analysis. Nature 185, 416422.CrossRefGoogle Scholar
Pletnev, S. V., Zhang, W., Mukhopadhyay, S., Fisher, B. R., Hernandez, R., Brown, D. T., Baker, T. S., Rossmann, M. G. & Kuhn, R. J. (2001). Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105, 127136.CrossRefGoogle ScholarPubMed
Plevka, P., Battisti, A. J., Winkler, D. C., Tars, K., Holdaway, H. A., Bator, C. M. & Rossmann, M. G. (2012a). Sample preparation induced artifacts in cryo-electron tomographs. Microscopy and Microanalysis 18, 10431048.CrossRefGoogle ScholarPubMed
Plevka, P., Hafenstein, S., Li, L., D'Abrgamo, A. Jr, Cotmore, S. F., Rossmann, M. G. & Tattersall, P. (2011a). Structure of a packaging-defective mutant of minute virus of mice indicates that the genome is packaged via a pore at a 5-fold axis. Journal of Virology 85, 48224827.CrossRefGoogle Scholar
Plevka, P., Kaufmann, B. & Rossmann, M. G. (2011b). Analysis of phases in the structure determination of an icosahedral virus. Acta Crystallographica Section D: Biological Crystallography 67, 568577.CrossRefGoogle ScholarPubMed
Plevka, P., Perera, R., Cardosa, J., Kuhn, R. J. & Rossmann, M. G. (2012b). Crystal structure of human enterovirus 71. Science 336, 1274.CrossRefGoogle ScholarPubMed
Plevka, P., Perera, R., Cardosa, J., Kuhn, R. J. & Rossmann, M. G. (2012c). Structure determination of enterovirus 71. Acta Crystallographica Section D: Biological Crystallography 68, 12171222.CrossRefGoogle ScholarPubMed
Plevka, P., Tars, K. & Liljas, L. (2009). Structure and stability of icosahedral particles of a covalent coat protein dimer of bacteriophage MS2. Protein Science 18, 1653–61.CrossRefGoogle ScholarPubMed
Pokidysheva, E., Zhang, Y., Battisti, A. J., Bator-Kelly, C. M., Chipman, P. R., Xiao, C., Gregorio, G. G., Hendrickson, W. A., Kuhn, R. J. & Rossmann, M. G. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124, 485493.CrossRefGoogle ScholarPubMed
Rao, V. B. & Feiss, M. (2008). The bacteriophage DNA packaging motor. Annual Review of Genetics 42, 647681.CrossRefGoogle ScholarPubMed
Rao, Z., Belyaev, A. S., Fry, E., Roy, P., Jones, I. M. & Stuart, D. I. (1995). Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 378, 743747.CrossRefGoogle ScholarPubMed
Rayment, I., Baker, T. S., Caspar, D. L. & Murakami, W. T. (1982). Polyoma virus capsid structure at 22·5 Å resolution. Nature 295, 110115 (issue cover).CrossRefGoogle ScholarPubMed
Reddy, V. S., Natchiar, S. K., Stewart, P. L. & Nemerow, G. R. (2010). Crystal structure of human adenovirus at 3·5 Å resolution. Science 329, 10711075.CrossRefGoogle ScholarPubMed
Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291298.CrossRefGoogle Scholar
Roberts, M. M., White, J. L., Grütter, M. G. & Burnett, R. M. (1986). Three-dimensional structure of the adenovirus major coat protein hexon. Science 232, 11481151.CrossRefGoogle ScholarPubMed
Rossmann, M. G. (1972). The Molecular Replacement Method: A Collection of Papers on the Use of Non-crystallographic Symmetry. New York: Gordon & Breach.Google Scholar
Rossmann, M. G. (1979). Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting. Journal of Applied Crystallography 12, 225238.CrossRefGoogle Scholar
Rossmann, M. G. (1984). Synchrotron radiation studies of large proteins and supramolecular structures. In Biological Systems: Structure and Analysis (ed. Diakun, G. P. G., C. D., ), pp. 2840. Daresbury: Science and Engineering Research Council.Google Scholar
Rossmann, M. G. (1989a). The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. Journal of Biological Chemistry 264, 1458714590.CrossRefGoogle ScholarPubMed
Rossmann, M. G. (1989b). Determination of virus structures by the use of molecular replacement density averaging. In Improving Protein Phases. Proceedings of the Study Weekend held at Daresbury, 1988 (eds. Bailey, S., Dodson, E. & Phillips, S.), pp. 4956. Daresbury: Science and Engineering Research Council.Google Scholar
Rossmann, M. G. (1994). Viral cell recognition and entry. Protein Science 3, 17121725.CrossRefGoogle ScholarPubMed
Rossmann, M. G. (1999). Synchrotron radiation as a tool for investigating virus structures. Journal of Synchrotron Radiation 6, 816821.CrossRefGoogle Scholar
Rossmann, M. G. (2001). Molecular replacement – historical background. Acta Crystallographica Section D: Biological Crystallography 57, 13601366.CrossRefGoogle Scholar
Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. & Vriend, G. (1985). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145153.CrossRefGoogle ScholarPubMed
Rossmann, M. G., Battisti, A. J. & Plevka, P. (2011). Future prospects. In Advances in Protein Chemistry and Structural Biology, Volume 82: Recent Advances in Electron Cryomicroscopy, Part B (eds. Ludtke, S. J. & Prasad, B. V. V.), pp. 101121. San Diego, CA: Academic Press.Google Scholar
Rossmann, M. G., Bella, J., Kolatkar, P. R., He, Y., Wimmer, E., Kuhn, R. J. & Baker, T. S. (2000). Minireview: cell recognition and entry by rhino- and enteroviruses. Virology 269, 239247.CrossRefGoogle Scholar
Rossmann, M. G. & Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Crystallographica 15, 2431.CrossRefGoogle Scholar
Rossmann, M. G. & Erickson, J. W. (1983). Oscillation photography of radiation-sensitive crystals using a synchrotron source. Journal of Applied Crystallography 16, 629636.CrossRefGoogle Scholar
Rossmann, M. G., Ford, G. C., Watson, H. C. & Banaszak, L. J. (1972). Molecular symmetry of glyceraldehyde-3-phosphate dehydrogenase. Journal of Molecular Biology 64, 237249.CrossRefGoogle ScholarPubMed
Rossmann, M. G., He, Y. & Kuhn, R. J. (2002). Picornavirus-receptor interactions. Trends in Microbiology 10, 324331.CrossRefGoogle ScholarPubMed
Rossmann, M. G. & Johnson, J. E. (1989). Icosahedral RNA virus structure. Annual Review of Biochemistry 58, 533573.CrossRefGoogle ScholarPubMed
Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S. & Tsukihara, T. (1979). Processing and post-refinement of oscillation camera data. Journal of Applied Crystallography 12, 570581.CrossRefGoogle Scholar
Rossmann, M. G., McKenna, R., Tong, L., Xia, D., Dai, J., Wu, H., Choi, H. K., Marinescu, D. & Lynch, R. E. (1992). Molecular replacement real space averaging. In Molecular Replacement. Proceedings of the CCP4 Study Weekend, 31 January – 1 February 1992 (eds. Dodson, E., Gover, S. & Wolf, W.), pp. 3348. Daresbury: Science and Engineering Research Council.Google Scholar
Rossmann, M. G., Moras, D. & Olsen, K. W. (1974). Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194199.CrossRefGoogle ScholarPubMed
Rossmann, M. G. & Palmenberg, A. C. (1988). Conservation of the putative receptor attachment site in picornaviruses. Virology 164, 373382.CrossRefGoogle ScholarPubMed
Roussel, A., Lescar, J., Vaney, M. C., Wengler, G. & Rey, F. A. (2006). Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14, 7586.CrossRefGoogle ScholarPubMed
Roy, A., Bhardwaj, A., Datta, P., Lander, G. C. & Cingolani, G. (2012). Small terminase couples viral DNA binding to genome-packaging ATPase activity. Structure 20, 14031413.CrossRefGoogle ScholarPubMed
Scheid, A., Caliguiri, L. A., Compans, R. W. & Choppin, P. W. (1972). Isolation of paramyxovirus glycoproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 50, 640652.CrossRefGoogle ScholarPubMed
Sherry, B., Mosser, A. G., Colonno, R. J. & Rueckert, R. R. (1986). Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. Journal of Virology 57, 246257.CrossRefGoogle ScholarPubMed
Sherry, B. & Rueckert, R. (1985). Evidence for at least two dominant neutralization antigens on human rhinovirus 14. Journal of Virology 53, 137143.CrossRefGoogle ScholarPubMed
Shnyrova, A. V., Ayllon, J., Mikhalyov, I. I., Villar, E., Zimmerberg, J. & Frolov, V. A. (2007). Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain. Journal of Cell Biology 179, 627633.CrossRefGoogle ScholarPubMed
Simpson, A. A., Chandrasekar, V., Hébert, B., Sullivan, G. M., Rossmann, M. G. & Parrish, C. R. (2000a). Host range and variability of calcium binding by surface loops in the capsids of canine and feline parvoviruses. Journal of Molecular Biology 300, 597610.CrossRefGoogle ScholarPubMed
Simpson, A. A., Chipman, P. R., Baker, T. S., Tijssen, P. & Rossmann, M. G. (1998). The structure of an insect parvovirus (Galleria mellonella densovirus) at 3·7 Å resolution. Structure 6, 13551367.CrossRefGoogle ScholarPubMed
Simpson, A. A., Hebert, B., Sullivan, G. M., Parrish, C. R., Zadori, Z., Tijssen, P. & Rossmann, M. G. (2002). The structure of porcine parvovirus: comparison with related viruses. Journal of Molecular Biology 315, 11891198.CrossRefGoogle ScholarPubMed
Simpson, A. A., Nandhagopal, N., Van Etten, J. L. & Rossmann, M. G. (2003). Structural analyses of Phycodnaviridae and Iridoviridae. Acta Crystallographica Section D: Biological Crystallography 59, 20532059.CrossRefGoogle ScholarPubMed
Simpson, A. A., Tao, Y., Leiman, P. G., Badasso, M. O., He, Y., Jardine, P. J., Olson, N. H., Morais, M. C., Grimes, S., Anderson, D. L., Baker, T. S. & Rossmann, M. G. (2000b). Structure of the bacteriophage ϕ29 DNA packaging motor. Nature 408, 745750.CrossRefGoogle Scholar
Smith, D. E., Tans, S. J., Smith, S. B., Grimes, S., Anderson, D. L. & Bustamante, C. (2001). The bacteriophage ϕ29 portal motor can package DNA against a large internal force. Nature 413, 748752.CrossRefGoogle Scholar
Smith, T. J., Chase, E. S., Schmidt, T. J., Olson, N. H. & Baker, T. S. (1996). Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature 383, 350354.CrossRefGoogle ScholarPubMed
Smith, T. J., Kremer, M. J., Luo, M., Vriend, G., Arnold, E., Kamer, G., Rossmann, M. G., McKinlay, M. A., Diana, G. D. & Otto, M. J. (1986). The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233, 12861293.CrossRefGoogle ScholarPubMed
Smyth, M., Tate, J., Hoey, E., Lyons, C., Martin, S. & Stuart, D. (1995). Implications for viral uncoating from the structure of bovine enterovirus. Nature Structural Biology 2, 224231.CrossRefGoogle ScholarPubMed
Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. (1997). Proteolytic activation of tick-borne encephalitis virus by furin. Journal of Virology 71, 84758481.CrossRefGoogle ScholarPubMed
Staunton, D. E., Merluzzi, V. J., Rothlein, R., Barton, R., Marlin, S. D. & Springer, T. A. (1989). A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56, 849853.CrossRefGoogle ScholarPubMed
Stehle, T., Gamblin, S. J., Yan, Y. & Harrison, S. C. (1996). The structure of simian virus 40 refined at 3·1 Å resolution. Structure 4, 165182.CrossRefGoogle ScholarPubMed
Stiasny, K., Allison, S. L., Marchler-Bauer, A., Kunz, C. & Heinz, F. X. (1996). Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. Journal of Virology 70, 81428147.CrossRefGoogle ScholarPubMed
Stiasny, K. & Heinz, F. X. (2006). Flavivirus membrane fusion. Journal of General Virology 87, 27552766.CrossRefGoogle ScholarPubMed
Stockley, P. G., Stonehouse, N. J., Murray, J. B., Goodman, S. T., Talbot, S. J., Adams, C. J., Liljas, L. & Valegard, K. (1995). Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Research 23, 25122518.CrossRefGoogle ScholarPubMed
Strauss, J. H. & Strauss, E. G. (2002). Viruses and Human Disease. San Diego: Academic Press.Google Scholar
Stubbs, G., Warren, S. & Holmes, K. (1977). Structure of RNA and RNA binding site in tobacco mosaic virus from 4 Å map calculated from X-ray fibre diagrams. Nature 267, 216221.CrossRefGoogle ScholarPubMed
Sun, S., Gao, S., Kondabagil, K., Xiang, Y., Rossmann, M. G. & Rao, V. B. (2012). Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proceedings of the National Academy of Sciences of the United States of America 109, 817822.CrossRefGoogle ScholarPubMed
Sun, S., Kondabagil, K., Draper, B., Alam, T. I., Bowman, V. D., Zhang, Z., Hegde, S., Fokine, A., Rossmann, M. G. & Rao, V. B. (2008). The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell 135, 12511262.CrossRefGoogle ScholarPubMed
Sun, S., Kondabagil, K., Gentz, P. M., Rossmann, M. G. & Rao, V. B. (2007). The structure of the ATPase that powers DNA packaging into bacteriophage T4 procapsids. Molecular Cell 25, 943949.CrossRefGoogle ScholarPubMed
Sun, S., Rao, V. B. & Rossmann, M. G. (2010). Genome packaging in viruses. Current Opinion in Structural Biology 20, 114120.CrossRefGoogle ScholarPubMed
Sun, S., Xiang, Y., Wataru, A., Holdaway, H., Pal, P., Zhang, X., Diamond, M. S., Nabel, G. J. & Rossmann, M. G. (2013). Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. eLIFE, in press. doi: 10.7554/eLife.00435.CrossRefGoogle ScholarPubMed
Tang, J., Jose, J., Chipman, P., Zhang, W., Kuhn, R. J. & Baker, T. S. (2011). Molecular links between the E2 envelope glycoprotein and nucleocapsid core in Sindbis virus. Journal of Molecular Biology 414, 442459.CrossRefGoogle ScholarPubMed
Tao, Y., Olson, N. H., Xu, W., Anderson, D. L., Rossmann, M. G. & Baker, T. S. (1998). Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 95, 431437.CrossRefGoogle ScholarPubMed
Thomassen, E., Gielen, G., Schutz, M., Schoehn, G., Abrahams, J. P., Miller, S. & van Raaij, M. J. (2003). The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold. Journal of Molecular Biology 331, 361373.CrossRefGoogle ScholarPubMed
Tong, L. & Rossmann, M. G. (1990). The locked rotation function. Acta Crystallographica Section A 46, 783792.CrossRefGoogle ScholarPubMed
Tsao, J., Chapman, M. S., Agbandje, M., Keller, W., Smith, K., Wu, H., Luo, M., Smith, T. J., Rossmann, M. G., Compans, R. W. & Parrish, C. R. (1991). The three-dimensional structure of canine parvovirus and its functional implications. Science 251, 14561464.CrossRefGoogle ScholarPubMed
Tsao, J., Chapman, M. S., Wu, H., Agbandje, M., Keller, W. & Rossmann, M. G. (1992). Structure determination of monoclinic canine parvovirus. Acta Crystallographica Section B 48, 7588.CrossRefGoogle ScholarPubMed
Tuthill, T. J., Groppelli, E., Hogle, J. M. & Rowlands, D. J. (2010). Picornaviruses. Current Topical Microbiology Immunology 343, 4389.Google ScholarPubMed
Valegård, K., Liljas, L., Fridborg, K. & Unge, T. (1990). The three-dimensional structure of the bacterial virus MS2. Nature 345, 3641.CrossRefGoogle ScholarPubMed
Valegård, K., Murray, J. B., Stockley, P. G., Stonehouse, N. J. & Liljas, L. (1994). Crystal structure of an RNA bacteriophage coat protein-operator complex. Nature 371, 623626.CrossRefGoogle ScholarPubMed
van Raaij, M. J., Schoehn, G., Burda, M. R. & Miller, S. (2001). Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. Journal of Molecular Biology 314, 11371146.CrossRefGoogle ScholarPubMed
von Bonsdorff, C. H. & Harrison, S. C. (1975). Sindbis virus glycoproteins form a regular icosahedral surface lattice. Journal of Virology 16, 141145.CrossRefGoogle Scholar
von Bonsdorff, C. H. & Harrison, S. C. (1978). Hexagonal glycoprotein arrays from Sindbis virus membranes. Journal of Virology 28, 578583.CrossRefGoogle ScholarPubMed
Voss, J. E., Vaney, M.-C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., Thompson, A., Bricogne, G. & Rey, F. A. (2010). Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709712.CrossRefGoogle ScholarPubMed
Walters, R. W., Agbandje-McKenna, M., Bowman, V. D., Moninger, T. O., Olson, N. H., Seiler, M., Chiorini, J. A., Baker, T. S. & Zabner, J. (2004). Structure of adeno-associated virus serotype 5. Journal of Virology 78, 33613371.CrossRefGoogle ScholarPubMed
Wang, X., Peng, W., Ren, J., Hu, Z., Xu, J., Lou, Z., Li, X., Yin, W., Shen, X., Porta, C., Walter, T. S., Evans, G., Axford, D., Owen, R., Rowlands, D. J., Wang, J., Stuart, D. I., Fry, E. E. & Rao, Z. (2012). A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nature Structural and Molecular Biology 19, 424429.CrossRefGoogle ScholarPubMed
Watson, J. D. & Crick, F. H. C. (1953a). Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964967.CrossRefGoogle ScholarPubMed
Watson, J. D. & Crick, F. H. C. (1953b). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737738.CrossRefGoogle ScholarPubMed
Wikoff, W. R., Liljas, L., Duda, R. L., Tsuruta, H., Hendrix, R. W. & Johnson, J. E. (2000). Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 21292133.CrossRefGoogle ScholarPubMed
Wiley, D. C., Wilson, I. A. & Skehel, J. J. (1981). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289, 373378.CrossRefGoogle ScholarPubMed
Williams, R. C. & Smith, K. M. (1958). The polyhedral form of the Tipula iridescent virus. Biochimica et Biophysica Acta 28, 464469.CrossRefGoogle ScholarPubMed
Wilson, H. R. (1966). Diffraction of X-rays by Proteins, Nucleic Acids and Viruses. London: Edward Arnold Publishers Ltd.Google Scholar
Wrigley, N. G. (1969). An electron microscope study of the structure of Sericesthis iridescent virus. Journal of General Virology 5, 123134.CrossRefGoogle ScholarPubMed
Wu, H. & Rossmann, M. G. (1993). The canine parvovirus empty capsid structure. Journal of Molecular Biology 233, 231244.CrossRefGoogle ScholarPubMed
Wu, S. J. L., Grouard-Vogel, G., Sun, W., Mascola, J. R., Brachtel, E., Putvatana, R., Louder, M. K., Filgueira, L., Marovich, M. A., Wong, H. K., Blauvelt, A., Murphy, G. S., Robb, M. L., Innes, B. L., Birx, D. L., Hayes, C. G. & Frankel, S. S. (2000). Human skin Langerhans cells are targets of dengue virus infection. Nature Medicine 6, 816820.CrossRefGoogle ScholarPubMed
Xiang, Y., Morais, M. C., Cohen, D. N., Bowman, V. D., Anderson, D. L. & Rossmann, M. G. (2008). Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage ϕ29 tail. Proceedings of the National Academy of Sciences of the United States of America 105, 95529557.CrossRefGoogle Scholar
Xiao, C., Bator, C. M., Bowman, V. D., Rieder, E., He, Y., Hébert, B., Bella, J., Baker, T. S., Wimmer, E., Kuhn, R. J. & Rossmann, M. G. (2001). Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. Journal of Virology 75, 24442451.CrossRefGoogle ScholarPubMed
Xiao, C., Chipman, P. R., Battisti, A. J., Bowman, V. D., Renesto, P., Raoult, D. & Rossmann, M. G. (2005). Cryo-electron microscopy of the giant Mimivirus. Journal of Molecular Biology 353, 493496.CrossRefGoogle ScholarPubMed
Xiao, C., Kuznetsov, Y. G., Sun, S., Hafenstein, S. L., Kostyuchenko, V. A., Chipman, P. R., Suzan-Monti, M., Raoult, D., McPherson, A. & Rossmann, M. G. (2009). Structural studies of the giant Mimivirus. PLoS Biology 7, e1000092.CrossRefGoogle ScholarPubMed
Xiao, C., McKinlay, M. A. & Rossmann, M. G. (2011). Design of capsid-binding antiviral agents against human rhinoviruses. In RSC Biomolecular Sciences Series, No. 21, Structural Virology (eds. Agbandje-McKenna, M. & McKenna, R.), pp. 321339. London, England: Royal Society of Chemistry.Google Scholar
Xiao, C. & Rossmann, M. G. (2011). Structures of giant icosahedral eukaryotic dsDNA viruses. Current Opinion in Virology 1, 101109.CrossRefGoogle ScholarPubMed
Xie, Q., Bu, W., Bhatia, S., Hare, J., Somasundaram, T., Azzi, A. & Chapman, M. S. (2002). The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America 99, 1040510410.CrossRefGoogle ScholarPubMed
Xie, Q. & Chapman, M. S. (1996). Canine parvovirus capsid structure, analyzed at 2·9 Å resolution. Journal of Molecular Biology 264, 497520.CrossRefGoogle ScholarPubMed
Xu, L., Benson, S. D., Butcher, S. J., Bamford, D. H. & Burnett, R. M. (2003). The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. Structure 11, 309322.CrossRefGoogle Scholar
Yan, X., Chipman, P. R., Castberg, T., Bratbak, G. & Baker, T. S. (2005). The marine algal virus PpV01 has an icosahedral capsid with T=219 quasi-symmetry. Journal of Virology 79, 92369243.CrossRefGoogle Scholar
Yan, X., Olson, N. H., Van Etten, J. L., Bergoin, M., Rossmann, M. G. & Baker, T. S. (2000). Structure and assembly of large lipid-containing dsDNA viruses. Nature Structural Biology 7, 101103.Google ScholarPubMed
Yan, X., Yu, Z., Zhang, P., Battisti, A. J., Holdaway, H. A., Chipman, P. R., Bajaj, C., Bergoin, M., Rossmann, M. G. & Baker, T. S. (2009). The capsid proteins of a large, icosahedral dsDNA virus. Journal of Molecular Biology 385, 12871299.CrossRefGoogle ScholarPubMed
Yin, H. S., Paterson, R. G., Wen, X., Lamb, R. A. & Jardetzky, T. S. (2005). Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proceedings of the National Academy of Sciences of the United States of America 102, 92889293.CrossRefGoogle ScholarPubMed
Yin, H. S., Wen, X., Paterson, R. G., Lamb, R. A. & Jardetzky, T. S. (2006). Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439, 3844.CrossRefGoogle ScholarPubMed
Yu, I.-M., Holdaway, H. A., Chipman, P. R., Kuhn, R. J., Rossmann, M. G. & Chen, J. (2009). Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion. Journal of Virology 83, 1210112107.CrossRefGoogle ScholarPubMed
Yu, I.-M., Zhang, W., Holdaway, H. A., Li, L., Kostyuchenko, V. A., Chipman, P. R., Kuhn, R. J., Rossmann, M. G. & Chen, J. (2008). Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 18341837.CrossRefGoogle Scholar
Yuan, P., Swanson, K. A., Leser, G. P., Paterson, R. G., Lamb, R. A. & Jardetzky, T. S. (2011). Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proceedings of the National Academy of Sciences of the United States of America 108, 1492014925.CrossRefGoogle ScholarPubMed
Zauberman, N., Mutsafi, Y., Halevy, D. B., Shimoni, E., Klein, E., Xiao, C., Sun, S. & Minsky, A. (2008). Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus. PLoS Biology 6, e114.CrossRefGoogle ScholarPubMed
Zhang, P., Mueller, S., Morais, M. C., Bator, C. M., Bowman, V. D., Hafenstein, S., Wimmer, E. & Rossmann, M. G. (2008). Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proceedings of the National Academy of Sciences of the United States of America 105, 1828418289.CrossRefGoogle ScholarPubMed
Zhang, R., Hryc, C. F., Cong, Y., Liu, X., Jakana, J., Gorchakov, R., Baker, M. L., Weaver, S. C. & Chiu, W. (2011a). 4·4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO Journal 30, 38543863.CrossRefGoogle ScholarPubMed
Zhang, W., Chipman, P. R., Corver, J., Johnson, P. R., Zhang, Y., Mukhopadhyay, S., Baker, T. S., Strauss, J. H., Rossmann, M. G. & Kuhn, R. J. (2003a). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature Structural Biology 10, 907912.CrossRefGoogle ScholarPubMed
Zhang, W., Mukhopadhyay, S., Pletnev, S. V., Baker, T. S., Kuhn, R. J. & Rossmann, M. G. (2002). Placement of the structural proteins in Sindbis virus. Journal of Virology 76, 1164511658.CrossRefGoogle ScholarPubMed
Zhang, X., Sheng, J., Plevka, P., Kuhn, R. J., Diamond, M. S. & Rossmann, M. G. (2013). Dengue structure differs at the temperatures of its human and mosquito hosts. Proceedings of the National Academy of Sciences of the United States of America 110, 67956799.CrossRefGoogle ScholarPubMed
Zhang, X., Sun, S., Xiang, Y., Wong, J., Klose, T., Raoult, D. & Rossmann, M. G. (2012). Structure of Sputnik, a virophage, at 3·5 Å resolution. Proceedings of the National Academy of Sciences of the United States of America 109, 1843118436.CrossRefGoogle ScholarPubMed
Zhang, X., Walker, S. B., Chipman, P. R., Nibert, M. L. & Baker, T. S. (2003b). Reovirus polymerase l3 localized by cryo-electron microscopy of virions at a resolution of 7·6 Å. Nature Structural Biology 10, 10111018.CrossRefGoogle Scholar
Zhang, X., Xiang, Y., Dunigan, D. D., Klose, T., Chipman, P. R., Van Etten, J. L. & Rossmann, M. G. (2011b). Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid. Proceedings of the National Academy of Sciences of the United States of America 108, 1483714842.CrossRefGoogle ScholarPubMed
Zhang, Y., Corver, J., Chipman, P. R., Zhang, W., Pletnev, S. V., Sedlak, D., Baker, T. S., Strauss, J. H., Kuhn, R. J. & Rossmann, M. G. (2003c). Structures of immature flavivirus particles. EMBO Journal 22, 26042613.CrossRefGoogle ScholarPubMed
Zhang, Y., Kaufmann, B., Chipman, P. R., Kuhn, R. J. & Rossmann, M. G. (2007). Structure of immature West Nile virus particles. Journal of Virology 81, 61416145.CrossRefGoogle Scholar
Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J. H., Baker, T. S., Kuhn, R. J. & Rossmann, M. G. (2004). Conformational changes of the flavivirus E glycoprotein. Structure 12, 16071618.CrossRefGoogle ScholarPubMed
Zhang, Z., Kottadiel, V. I., Vafabakhsh, R., Dai, L., Chemla, Y. R., Ha, T. & Rao, V. B. (2011c). A promiscuous DNA packaging machine from bacteriophage T4. PLoS Biology 9, e1000592.CrossRefGoogle ScholarPubMed