Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T07:49:09.792Z Has data issue: false hasContentIssue false

The sodium channel of excitable and non-excitable cells

Published online by Cambridge University Press:  17 March 2009

R. Villegas
Affiliation:
Instituto Internacional de Estudios Avanzados (IDEA), Apartado 17606, Caracas 1015A, Venezuela.
Gloria M. Villegas
Affiliation:
Instituto Internacional de Estudios Avanzados (IDEA), Apartado 17606, Caracas 1015A, Venezuela.
J. M. Rodriguez-Grille
Affiliation:
Instituto Internacional de Estudios Avanzados (IDEA), Apartado 17606, Caracas 1015A, Venezuela.
F. Sorais-Landaez
Affiliation:
Instituto Internacional de Estudios Avanzados (IDEA), Apartado 17606, Caracas 1015A, Venezuela.

Extract

Excitation and conduction in the majority of excitable cells, as originally described in the squid axon, are initiated by a transient and highly selective increase of the membrane Na conductance, which allows this ion to move passively down its electrochemical gradient (Hodgkin & Katz, 1949; Hodgkin & Huxley, 1952). The term ‘Na channel’ was introduced to describe the mechanism involved in this conductance change (Hodgkin & Keynes, 1955).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, N. J. (1985). Are glial cells excitable after all? Trends Neurosci. 8, 141142.CrossRefGoogle Scholar
Agnew, W. S., Levinson, S. R., Brabson, J. S. & Raftery, M. A. (1978). Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc. Natn. Acad. Sci. U.S.A. 75, 26062611.CrossRefGoogle ScholarPubMed
Agnew, W. S., Moore, A., Levinson, S. R. & Raftery, R. (1980). Identification of a w large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax of Electrophorus electricus. Biochem. biophys. Res. Commun. 92, 860866.CrossRefGoogle Scholar
Agnew, W. S. & Raftery, M. A. (1979). Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid–detergent micelle composition. Biochemistry 18, 19121918.Google Scholar
Angelides, K. J., Nutter, T. J., Elmer, L. W. & Kempner, E. S. (1985). Functional unit size of the neurotoxin receptors on the voltage-dependent sodium channel. J. biol. Chem. 260, 34313439.Google Scholar
Albuquerque, E. X. & Daly, J. W. (1977). Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In The Specificity and Action of Animal, Bacterial and Plant Toxins, Receptors and Recognition, series B, vol. 1 (ed. Cuatrecasas, P.), pp. 297338. London: Chapman and Hall.Google Scholar
Albuquerque, E. X., Daly, J. W. & Witkop, B. (1971). Batrachotoxin: chemistry and pharmacology. Science 172, 9951002.Google Scholar
Barchi, R. L. (1983). Protein components of the purified sodium channel from rat skeletal muscle sarcolemma. J. Neurochem. 40, 13771385.CrossRefGoogle ScholarPubMed
Barchi, R. L., Cohen, S. A. & Murphy, L. E. (1980). Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel. Proc. Natn. Acad. Sci. U.S.A. 77, 13061310.Google Scholar
Barchi, R. L. & Murphy, L. E. (1981). Estimate of the molecular weight of the sarcolemmal sodium channel using H2O–D2O centrifugation. J. Neurochem., 36, 20972100.CrossRefGoogle ScholarPubMed
Barhanin, J., Giglio, J. R., Léopold, P., Schmid, A., Sampaio, S. V. & Lazdunski, M. (1982). Tityus serrulatus venom contains two classes of toxins. Tityus γ toxin is a new tool with a very high affinity for studying the Na+ channel. J. biol. Chem. 257, 1255312558.Google Scholar
Barhanin, J., Pauron, D., Lombet, A., Norman, R. I., Vijveberg, H. P. M., Giglio, J. R. & Lazdunski, M. (1983 a). Electrophysiological characterization, solubilization, and purification of the Tityus γ-toxin receptor associated with the gating component of the Na+ channel from rat brain. EMBO J. 2, 915920.Google Scholar
Barhanin, J., Schmid, A., Lombet, A., Wheeler, K. P. & Lazdunski, M. (1983 b). Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel. J. biol. Chem. 258, 700702.Google Scholar
Barnola, F. V. & Villegas, R. (1976). Sodium flux through the sodium channels of axon membrane fragments isolated from lobster nerves. J. gen. Physiol. 67, 8190.CrossRefGoogle ScholarPubMed
Barnola, F. V., Villegas, R. & Camejo, G. (1973). Tetrodotoxin receptors in plasma membranes isolated from lobster nerve fibers. Biochem. biophys. Acta 298, 8494.CrossRefGoogle ScholarPubMed
Beneski, D. A. & Catterall, W. A. (1980). Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. Natn. Acad. Sci. U.S.A. 77, 639643.Google Scholar
Benzer, T. & Raftery, M. A. (1973). Solubilization and partial characterization of the tetrodotoxin binding component from nerve axons. Biochem. biophys. Res. Commun. 51, 939944.CrossRefGoogle ScholarPubMed
Beress, L. (1982). Biologically active compounds from coelenterates. Pure appl. Chem. 54, 19811984.CrossRefGoogle Scholar
Blaurock, A. E. & Wilkins, M. H. F. (1969). Structure of frog photoreceptor membranes. Nature 223, 906909.CrossRefGoogle ScholarPubMed
Blaustein, M. P. & Goldring, J. M. (1975). Membrane potentials in pinched-off presynaptic nerve terminals monitored with a fluorescent probe. J. Physiol. 247, 589615.Google Scholar
Brown, G. B., Tieszen, S. C., Daly, J. W., Warnick, J. E. & Albuquerque, E. X. (1981). Batrachotoxinin-A 20-α-benzoate: a new radioactive ligand for voltage sensitive sodium channels. Cell Mol. Neurobiol. 1, 1939.Google Scholar
Buonanno, A. & Villegas, R. (1983). Sodium channel activity in membrane fractions isolated from rats of different ages. Biochim. biophys. Acta 730, 161172.Google Scholar
Cahalan, M. D. (1975). Modification of sodium channel gating in frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J. Physiol. 244, 511534.CrossRefGoogle ScholarPubMed
Casadei, J. M., Gordon, R. D. & Barchi, R. L. (1986). Immunoaffinity isolation of Na+ channels from rat skeletal muscle J. biol. Chem. 261, 43184323.CrossRefGoogle ScholarPubMed
Casadei, J. M., Gordon, R. D., Lampson, L. A., Schotland, D. L. & Barchi, R. L. (1984). Monoclonal antibodies against the voltage sensitive Na+ channel from mammalian skeletal muscle. Proc. Natn. Acad. Sci. U.S.A. 81, 62276231.Google Scholar
Catterall, W. A. (1975). Cooperative activation of the action potential dependent binding of scorpion toxin to the action potential Na+ ionophore by neurotoxins. Proc. Natn. Acad. Sci. U.S.A. 72, 17821786.CrossRefGoogle Scholar
Catterall, W. A. (1977). Activation of the action potential Na+ ionophore by neurotoxins. An allosteric model. J. biol. Chem. 252, 86698676.Google Scholar
Catterall, W. A. (1980). Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. A. Rev. Pharmac. Toxicol. 20, 1543.CrossRefGoogle ScholarPubMed
Catterall, W. A. (1986). Molecular properties of voltage-sensitive sodium channels. A. Rev. Biochem. 55, 953985.Google Scholar
Catterall, W. A. & Beress, L. (1978). Sea anemone toxin and scorpion toxin share a common receptor site associated with the action potential Na+ ionophore. J. biol. Chem. 253, 73937396.Google Scholar
Catterall, W. A., Morrow, C. S., Daly, J. W. & Brown, G. B. (1981). Binding of batrachotoxinin-A 20-α-benzoate to a receptor site associated with sodium channels in synaptic nerve ending particles. J. biol. Chem. 256, 89228927.CrossRefGoogle ScholarPubMed
Catterall, W. A., Morrow, C. S. & Hartshorne, R. P. (1979). Neurotoxin binding to receptor sites associated with voltage-sensitive sodium channel in intact, lysed and detergent-solubilized brain membranes. J. biol. Chem. 254, 1137911387.CrossRefGoogle ScholarPubMed
Catterall, W. A., Ray, R. & Morrow, C. S. (1976). Membrane potential dependent binding of scorpion toxin to the action potential sodium ionophore. Proc. Natn. Acad. Sci. U.S.A. 73, 26822686.Google Scholar
Chacko, G. K. (1979). Effect of purified phospholipases on the binding of tetrodotoxin to axon plasma membrane. J. memb. Biol. 47, 285301.Google Scholar
Chiu, S. Y., Shrager, P. & Ritchie, J. M. (1984). Neuronal type Na+ and K+ channels in rabbit cultured Schwann-cells. Nature 311, 156157.Google Scholar
Condrescu, M. & Villegas, R. (1982). Ion selectivity of the nerve membrane sodium channel incorporated into liposomes. Biochim. biophys. Acta 688, 660666.Google Scholar
Correa, A. M., Villegas, G. M. & Villegas, R. (1987). Anemone toxin II receptor site of the lobster nerve sodium channel. Studies in membrane vesicles and in proteoliposomes. Biochim. biophys. Acta 897, 406422.CrossRefGoogle ScholarPubMed
Cuervo, L. A. & Adelman, W. J. (1970). Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J. gen. Physiol. 55, 199219.CrossRefGoogle ScholarPubMed
Darbon, M., Jover, E., Courad, F. & Rochat, H. (1983). Photoaffinity labeling of α and β-scorpion toxin receptor associated with rat brain sodium channel. Biochem. biophys. Res. Commun. 115, 415422.CrossRefGoogle ScholarPubMed
Delgado, D. & Barnola, F. V. (1986). Identification of a scorpion Leiurus quinquestriatus toxin receptor in isolated lobster nerve membranes. Acta Cient. Ven. 37 (Suppl. 1), 29.Google Scholar
Elmer, L. W., O’Brien, B. J., Nutter, T. J. & Angelides, K. J. (1985). Physicochemical characterization of the α-peptide of the sodium channel from rat brain. Biochemistry 24, 81288137.CrossRefGoogle ScholarPubMed
Feller, D. J., Talvenheimo, J. A. & Catterall, W. A. (1985). The sodium channel from rat brain: reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition. J. biol. Chem. 260, 1154211547.Google Scholar
French, R. J., Worley, J. F. III & Krueger, B. K. (1984). Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers. Biophys. J. 45, 301310.Google Scholar
Goldin, A. L., Snutch, T., Lübbert, H., Dowsett, A., Marshall, J., Alud, V., Downey, W., Fritz, L. C., Lester, H. A., Dunn, R., Catterall, W. A. & Davidson, N. (1986). Messenger RNA coding for only the α subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc. Natn. Acad. Sci. U.S.A. 83, 75037507.Google Scholar
Gray, E. G. & Whittaker, V. P. (1962). The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96, 7988.Google Scholar
Greenblatt, R. E., Blatt, Y. & Montal, M. (1985). The structure of the voltagesensitive sodium channel. FEBS Lett. 193, 125134.Google Scholar
Grishin, E. V., Kovalenko, E. V., Pashkov, V. N. & Shamotienko, O. G. (1984). Isolation and characterization of sodium channel. Membr. Biophys. (U.S.S.R.) 1, 858867.Google Scholar
Guy, R. & Seetharamulu, P. (1986). Molecular model of the action potential sodium channel. Proc. Natn. Acad. Sci. U.S.A. 83, 508512.CrossRefGoogle ScholarPubMed
Hafemann, D. R. (1972). Binding of radioactive tetrodotoxin to nerve membrane preparations. Biochem. biophys. Acta 266, 548556.Google Scholar
Hartshorne, R. P. & Catterall, W. A. (1981). Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc. Natn. Acad. Sci. U.S.A. 78, 46204624.Google Scholar
Hartshorne, R. P. & Catterall, W. A. (1984). The sodium channel from rat brain: purification and subunit composition. J. biol. Chem. 259, 16671675.Google Scholar
Hartshorne, R. P., Coppersmith, J. & Catterall, W. A. (1980). Size characteristics of the solubilized saxitoxin receptor of the voltage-sensitive sodium channel from rat brain. J. biol. Chem. 255, 1057210575.CrossRefGoogle ScholarPubMed
Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A. & Montal, M. (1985). Functional reconstitution of the purified brain sodium channel in planar lipid bilayer. Proc. Natn. Acad. Sci. U.S.A. 82, 240244.Google Scholar
Hartshorne, R. P., Messner, D. J., Coppersmith, J. C. & Catterall, W. A. (1982). The saxitoxin receptor of the sodium channel from rat brain: evidence for two non-identical subunits. J. biol. Chem. 257, 1388813891.Google Scholar
Henderson, R. & Strichartz, G. (1974). Ion fluxes through the sodium channels of garfish olfactory nerve membranes. J. Physiol. 238, 329342.CrossRefGoogle ScholarPubMed
Henderson, R. & Wang, J. H. (1972). Solubilization of a specific tetrodotoxin-binding component from garfish olfactory nerve membranes. Biochemistry 11, 45654569.Google Scholar
Herzog, W. H., Feibel, R. M. & Bryant, S. H. (1964). The effect of aconitine on the giant axon of the squid. J. gen. Physiol. 67, 8190.Google Scholar
Hille, B. (1968). Pharmacological modifications of the sodium channels of frog nerve. J. gen. Physiol. 51, 199219.Google Scholar
Hille, B. (1971). The permeability of the sodium channel to organic cations in myelinated nerve. J. gen. Physiol. 58, 599619.Google Scholar
Hirono, C., Yamagishi, S., Ohara, R., Hisanaga, Y., Nakayama, T. & Sugiyama, H. (1985). Characterization of mRNA responsible for induction of functional sodium channels in Xenopus oocytes. Brain Res. 359, 5764.Google Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500544.Google Scholar
Hodgkin, A. L. & Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108, 3777.Google Scholar
Hodgkin, A. L. & Keynes, R. D. (1955). Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. 121, 403414.Google Scholar
Jaimovich, E., Barhanin, J., Lazdunski, M., Ildefonse, M. & Rougier, O. (1982). Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp and biochemical characterization of the receptor. Proc. Natn. Acad. Sci. U.S.A. 79, 38963900.Google Scholar
Kasahara, M. & Hinkle, P. C. (1976). Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. Proc. Natn. Acad. Sci. U.S.A. 73, 396400.Google Scholar
Kosower, E. (1985). A structural and dynamic molecular model for the sodium channel of Electrophorus electricus. FEBS Lett. 182, 234242.Google Scholar
Kraner, S. D., Tanaka, J. C. & Barchi, R. L. (1985). Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membrane. J. biol. Chem. 260, 63416347.CrossRefGoogle Scholar
Krueger, B. K., Worley, J. F. III & French, R. J. (1983). Single sodium channels from rat brain incorporated into planar lipid bilayer membranes. Nature 303, 172175.Google Scholar
Li, P. P. & White, T. D. (1977). Rapid effects of veratridine, tetrodotoxin, gramicidin D, valinomycin, and NaCN on Na+, K+, and ATP contents of synaptosomes. J. Neurochem. 28, 967975.Google Scholar
Lombet, A. & Lazdunski, M. (1984). Characterization, solubilization, affinity labeling and purification of the cardiac Na+ channel using Tityus γ toxin. Eur. J. Biochem. 141, 651660.Google Scholar
Lombet, A., Renaud, J. F., Chicheportiche, R. & Lazdunski, M. (1981). A cardiac tetrodotoxin-binding component: biochemical identification, characterization and properties. Biochemistry 20, 12791285.CrossRefGoogle ScholarPubMed
Matthews, J. C., Albuquerque, E. X. & Eldefrawi, M. E. (1979). Influence of batrachotoxin, veratridine, grayanotoxin I, and tetrodotoxin on uptake of 22Na+ by rat brain membrane preparations. Life Sci. 25, 16511658.Google Scholar
Messner, D. J. & Catterall, W. A. (1985). The sodium channel from rat brain: separation and characterization of subunits. J. biol. Chem. 260, 1059710604.Google Scholar
Messner, D. J. & Catterall, W. A. (1986). The sodium channel from rat brain: role of the β1 and β2 subunits in saxitoxin binding. J. biol. Chem. 261, 211215.Google Scholar
Messner, D. J., Feller, D. J., Scheuer, T. & Catterall, W. A. (1986). Functional properties of rat brain sodium channels lacking the β1 or β2 subunit. J. biol. Chem. 261, 1488214890.Google Scholar
Miller, C. (1978). Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: steady-state electrical properties. J. membrane Biol. 40, 123.Google Scholar
Miller, J. A., Agnew, W. S. & Levinson, S. R. (1983). Principal glycopeptide of the tetrodotoxin/saxitoxin binding protein from Electrophorus electricus: isolation and partial characterization. Biochemistry 22, 462470.Google Scholar
Moczydlowski, E., Garber, S. S. & Miller, C. (1984 a). Batrachotoxin-activated Na+ channels in planar lipid bilayers: competition of tetrodotoxin block by Na+. J. gen. Physiol. 84, 665686.Google Scholar
Moczydlowski, E., Hall, S., Garber, S. S., Strichartz, G. S. & Miller, C. (1984 b). Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins: effect of toxin charge. J. gen. Physiol. 84, 687704.CrossRefGoogle Scholar
Mullins, L. J. (1956). The structure of nerve cell membrane. In Molecular Structure and Functional Activity of Nerve Cells (ed. Grenell, R. G. & Mullins, L. J.), pp. 123166. Washington: American Institute of Biological Sciences.Google Scholar
Mullins, L. J. (1960). An analysis of pore size in excitable membranes. J. gen. Physiol. 43 (Suppl. 1), 105117.Google Scholar
Munson, R., Westermark, B. & Glaser, L. (1979). Tetrodotoxin-sensitive sodium channels in normal human fibroblast and normal human glia-like cells. Proc. Natn. Acad. Sci. U.S.A. 76, 64256429.Google Scholar
Nakayama, H., Withy, R. M. & Raftery, M. A. (1982). Use of a monoclonal antibody to purify the tetrodotoxin binding component from the electroplax of Electrophorus electricus. Proc. Natn. Acad. Sci. U.S.A. 79, 75757579.Google Scholar
Narahashi, T. (1974). Chemicals as tools in the study of excitable membranes. Physiol. Rev. 54, 813889.Google Scholar
Narahashi, T. (1984). Pharmacology of nerve membrane sodium channels. Curr. Top. memb. Transp. 22, 483516.CrossRefGoogle Scholar
Narahashi, T., Anderson, N. C. & Moore, J. W. (1966). Tetrodotoxin does not block excitation from inside the nerve membrane. Science 153, 765767.Google Scholar
Narahashi, T., Moore, J. W. & Scott, W. R. (1964). Tetrodotoxin blockage of sodium conductance increase in lobster giant axon. J. gen. Physiol. 47, 965974.Google Scholar
Narahashi, T. & Seyama, I. (1974). Mechanism of nerve depolarization caused by grayanotoxin I. J. Physiol. 242, 471487.Google Scholar
Noda, M., Ikeda, T., Kayano, T., Susuki, H., Takeshima, H., Kurasaki, M., Takahashi, T. & Numa, S. (1986 a). Existence of distinct sodium channel messenger- RNAs in rat brain. Nature 320, 188192.Google Scholar
Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M. & Numa, S. (1986 b). Expression of functional sodium channels from cloned cDNA. Nature 322, 826828.CrossRefGoogle ScholarPubMed
Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kengawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121127.Google Scholar
Norman, R. I., Schmid, A., Lombet, A., Barhanin, J. & Lazdunski, M. (1983). Purification of binding protein for Tityus γ toxin identified with the gating component of the voltage-sensitive Na+ channel. Proc. Natn. Acad. Sci. U.S.A. 80, 41644168.Google Scholar
Ohta, M., Narahashi, T. & Keeler, R. F. (1973). Effect of veratrum alkaloids on membrane potentials and conductance of squid and crayfish giant axon. J. Pharmacol. exp. Ther. 184, 143154.Google Scholar
Reiser, G. & Hamprecht, B. (1983). Sodium-channels in non excitable glioma cells, shown by the influence of veratridine, scorpion toxin, and tetrodotoxin on membrane potential and on ion transport. Pflügers Arch. 397, 260264.Google Scholar
Ritchie, J. M. & Rang, H. P. (1983). Extraneuronal saxitoxin binding sites in rabbit myelinated nerve. Proc. Natn. Acad. Sci. U.S.A. 80, 28032807.Google Scholar
Ritchie, J. M. & Rogart, R. (1977). The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. Biochem. Pharmac. 79, 150.CrossRefGoogle ScholarPubMed
Roberts, R. H. & Barchi, R. L. (1987). The voltage-sensitive sodium channel from rabbit skeletal muscle. Chemical characterization of subunits. J. biol. Chem. 262, 22982303.Google Scholar
Rosenberg, R. L., Tomiko, S. A. & Agnew, W. A. (1984 a). Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricvs. Proc. Natn. Acad. Sci. U.S.A. 81, 12391243.Google Scholar
Rosenberg, R. L., Tomiko, S. A. & Agnew, W. A. (1984 b). Single channel properties of the reconstituted voltage-regulated Na channels isolated from the electroplax of Electrophorus electricus. Proc. Natn. Acad. Sci. U.S.A. 81, 55945598.Google Scholar
Schmitt, F. O. (1957). The structure and properties of nerve membranes. In Metabolism of the Nervous System (ed. Richter, D.), pp. 3547. New York: Pergamon Press.CrossRefGoogle Scholar
Sharkey, R. G., Beneski, D. A. & Catterall, W. A. (1984). Differential labeling of the α and β1 subunits of the sodium channel by photoreactive derivatives of scorpion toxin. Biochemistry 23, 60786086.Google Scholar
Shrager, P., Chiu, S. Y. & Ritchie, J. M. (1985). Voltage-dependent sodium and potassium channels in mammalian cultured Schwann cells. Proc. Natn. Acad. Sci. U.S.A. 82, 948952.CrossRefGoogle ScholarPubMed
Solomon, A. K. (1960). Red cell membrane structure and ion transport. J. gen. Physiol. 43 (Suppl. 1), 115.CrossRefGoogle ScholarPubMed
Stühmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. (1987). Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur. biophys. J. 14, 131138.Google Scholar
Sumikawa, K., Parker, I. & Miledi, R. (1984). Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage operated channels. Proc. Natn. Acad. Sci. U.S.A. 81, 79947998.Google Scholar
Tamkun, M. M. & Catterall, W. A. (1981). Reconstitution of the voltage-sensitive sodium channel of rat brain from solubilized components. J. biol. Chem. 256, 1145711463.Google Scholar
Tamkun, M. M., Talvenheimo, J. A. & Catterall, W. A. (1984). The sodium channel from rat brain: reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components. J. biol. Chem. 259, 16761688.Google Scholar
Ulbricht, W. (1969). The effect of veratridine on excitable membranes of nerve and muscle. Ergebn. Physiol. 61, 1871.Google Scholar
Villegas, J. (1984). Axon–Schwann cell relationship. Curr. Top. memb. Transp. 22, 547571.Google Scholar
Villegas, R. & Barnola, F. V. (1961). Characterization of the resting axolemma in the giant axon of the squid. J. gen. Physiol. 44, 963977.Google Scholar
Villegas, R., Barnola, F. V. & Camejo, G. (1973). Action of proteases and phospholipases on tetrodotoxin binding to axolemma preparations isolated from lobster nerve fibers. Biochim. biophys. Acta 318, 6168.Google Scholar
Villegas, R., Barnola, F. V., Sevcik, C. & Villegas, G. M. (1976 b). Action of the sterol-binding form of filipin on the lobster axon membrane. Biochim. biophys. Acta 426, 8187.Google Scholar
Villegas, J., Sevcik, C, Barnola, F. V. & Villegas, R. (1976 a). Grayanotoxin, veratrine and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers. J. gen. Physiol. 67, 369380.Google Scholar
Villegas, R., Sorais-Landaez, F., Rodriguez, J. M., Miguel, V. & Villegas, G. M. (1987). The lobster nerve sodium channel. 9th International Biophysics Congress, Jerusalem, Israel (Abstr.).Google Scholar
Villegas, R. & Villegas, G. M. (1960). Characterization of the membranes in the giant nerve fiber of the squid. J. gen. Physiol. 43 (Suppl. 1), 73103.CrossRefGoogle ScholarPubMed
Villegas, R., Villegas, G. M., Barnola, F. V. & Racker, E. (1977). Incorporation of the sodium channel of lobster nerve axon membrane. Biochem. biophys. Res. Commun. 79, 210217.Google Scholar
Villegas, R., Villegas, G. M., Condresco-Guidi, M. & Suarez-Mata, Z. (1980). Characterization of the nerve membrane sodium channel incorporated into soybean liposomes: a sodium channel active particle. Ann. N.Y. Acad. Sci. 358, 183203.Google Scholar
Villegas, R., Villegas, L., Gimenez, M. & Villegas, G. M. (1963). Schwann cell and axon electrical potential differences. Squid nerve structure and excitable membrane location. J. gen. Physiol. 43, 73103.Google Scholar
Villegas, R., Villegas, G. M. & Suarez-Mata, Z. (1981). Reconstitution of the sodium channel with partially solubilized lobster nerve membrane. J. Physiol. (Paris) 77, 10771086.Google Scholar
Villegas, R., Villegas, G. M., Suarez-Mata, Z. & Rodriguez, F. (1983). Reconstitution of nerve membrane sodium channel. In Structure and Function of Excitable Cells (ed. Chang, D. C., Tasaki, I., Adelman, W. J. & Leuchtag, H. R.), pp. 453469. New York: Plenum Press.Google Scholar
Weigele, J. B. & Barchi, R. L. (1982). Functional reconstitution of the purified sodium channel protein from rat sarcolemma. Proc. Natn. Acad. Sci. U.S.A. 79, 36513655.Google Scholar