Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T06:47:45.328Z Has data issue: false hasContentIssue false

Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants

Published online by Cambridge University Press:  17 March 2009

Vladimir P. Skulachev
Affiliation:
Department of Bioenergetics, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russia

Abstract

To proceed at a high rate, phosphorylating respiration requires ADP to be available. In the resting state, when the energy consumption is low, the ADP concentration decreases so that phosphorylating respiration ceases. This may result in an increase in the intracellular concentrations of O2 as well as of one-electron O2 reductants such as These two events should dramatically enhance non-enzymatic formation of reactive oxygen species, i.e. of , and OHׁ, and, hence, the probability of oxidative damage to cellular components. In this paper, a concept is put forward proposing that non-phosphorylating (uncoupled or non-coupled) respiration takes part in maintenance of low levels of both O2 and the O2 reductants when phosphorylating respiration fails to do this job due to lack of ADP.

In particular, it is proposed that some increase in the H+ leak of mitochondrial membrane in State 4 lowers , stimulates O2 consumption and decreases the level of which otherwise accumulates and serves as one-electron O2 reductant. In this connection, the role of natural uncouplers (thyroid hormones), recouplers (male sex hormones and progesterone), non-specific pore in the inner mitochondrial membrane, and apoptosis, as well as of non-coupled electron transfer chains in plants and bacteria will be considered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alati, T., Van Cleeff, M. & Jirtle, R. L. (1989). Radiosensitivity of parenchymal hepatocytes as a function of oxygen concentration. Radiation Res. 118, 488501.Google Scholar
Aleksandrowicz, Z., Swierczynski, J. & Zelewsi, L. (1972). Effect of progesterone on respiration and oxidative phosphorylation. Eur. J. Biochem. 31, 300307.CrossRefGoogle ScholarPubMed
Attallah, N. A. & Lata, G. F. (1968). Steroid-protein interactions studied by fluorescence quenching. Biochim. Biophys. Acta 168, 321333.CrossRefGoogle Scholar
Avetisyan, A. V., Bogachev, A. V., Murtasina, R. A. & Skulachev, V. P. (1992). Involvement of d-type oxidase in the Na+-motive respiratory chain of Escherichia coli growing under low conditions. FEBS Lett. 306, 199202.CrossRefGoogle Scholar
Baryshev, V. A., Glagolev, A. N. & Skulachev, V. P. (1981). Sensing of in phototaxis of Halobacterium halobium Nature 292, 338340.CrossRefGoogle Scholar
Benson, D. M., Knopp, J. A. & Longmuir, I. S. (1980). Intracellular oxygen measurements of mouse liver cells using quantitative fluorescence video microscopy. Biochim. Biophys. Acta 591, 187197.CrossRefGoogle ScholarPubMed
Bernardi, P. (1992). Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. J. Biol. Chem. 267, 88348839.CrossRefGoogle ScholarPubMed
Bernardi, P., Broekemeier, K. M. & Pfeiffer, D. R. (1994). Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J. Bioenerg. Biomembr. 26, 509517.CrossRefGoogle ScholarPubMed
Bernassau, J. M., Reversat, J. L., Ferrara, P., Caput, D. & Lefur, G. (1993). A 3D model of the peripheral benzodiazepine receptor and its implication in intramitochondrial cholesterol transport. J. Mol. Graphics 11, 236244.Google Scholar
Bibikov, S. I., Grishanin, R. N., Kaulen, A. D., Marwan, W., Oesterhelt, D. & Skulachev, V. P. (1993). Bacteriorhodopsin is involved in halobacterial photoreception. Proc. Natn. Acad. Sci. USA 90, 94469450.CrossRefGoogle ScholarPubMed
Bielawsky, J., Thompson, T. E. & Lehninger, A. L. (1966). The effect of 2, 4-dinitrophenol on the electrical resistance of phospholipid bilayer membranes. Biochem. Biophys. Res. Commun. 24, 948954.CrossRefGoogle Scholar
Boffoli, D., Scacco, S. C., Vergari, R., Solarino, G., Santacroce, G. & Papa, S. (1994). Decline with age of the respiratory chain activity in human skeletal muscle. Biochim. Biophys. Acta 1226, 7382.CrossRefGoogle ScholarPubMed
Bogachev, A. V., Murtasina, R. A. & Skulachev, V. P. (1993). Cytochrome d induction in Escherichia coli growing under unfavourable conditions. FEBS Lett. 336, 7578.CrossRefGoogle Scholar
Boveris, A. & Chance, B. (1973). The mitochondrial generation and hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707716.CrossRefGoogle ScholarPubMed
Brand, M. D. (1990). The proton leak across the mitochondrial inner membrane. Biochim. Biophys. Acta 1018, 128133.CrossRefGoogle ScholarPubMed
Brand, M. D., Steverding, D., Kadenbach, B., Stevenson, P. M. & Hafner, R. P. (1992). The mechanism of the increase in mitochondrial proton permeability induced by thyroid hormones. Eur. J. Biochem. 296, 775781.CrossRefGoogle Scholar
Budrene, E. O. & Berg, H. C. (1991). Complex patterns formed by motile cells of Escherichia coli. Nature 349, 630633.CrossRefGoogle ScholarPubMed
Carbonera, D. & Azzone, G. F. (1988). Permeability of inner mitochondrial membrane and oxidative stress. Biochim. Biophys. Acta 943, 245255.CrossRefGoogle ScholarPubMed
Chacon, E. & Acosta, D. (1991). Mitochondrial regulation of superoxide by Ca2+: an alternative mechanism for the cardiotoxicity of doxorubicin. Toxicol. Appl. Pharmacol. 107, 117128.CrossRefGoogle ScholarPubMed
Clark, A. Jr. & Clark, P. A. A. (1985). Local oxygen gradients near isolated mitochondria. Biophys. J. 48, 931938.CrossRefGoogle ScholarPubMed
Cortopassi, G. & Wang, E. (1995). Modelling the effects of age-related mtDNA mutation accumulation; complex I deficiency, superoxide and cell death. Biochim. Biophys. Acta 1271, 171176.CrossRefGoogle ScholarPubMed
Creuzet, S., Ravanel, P., Tissut, M. & Kaouadji, M. (1988). Uncoupling properties of three flavonols from plane-tree buds. Phytochemistry 27, 30933099.Google Scholar
Crompton, M., McGuinness, O. & Nazareth, W. (1992). The involvement of cyclosporin A binding proteins in regulating and uncoupling mitochondrial energy transduction. Biochim. Biophys. Acta 1101, 214217.Google Scholar
Cross, A. R. & Jones, O. T. G. (1991). Enzymatic mechanisms of superoxide production. Biochim. Biophys. Acta 1057, 281298.CrossRefGoogle Scholar
Dalton, H. & Postgate, J. P. (1969 a). Growth and physiology of Azotobacter ehroococcum in continuous cultures. J. Gen. Microbiol. 56, 307319.Google Scholar
Dalton, H. & Postgate, J. P. (1969 b). Effect of oxygen on growth of Azotobacter ehroococcum in batch and continuous cultures. J. Gen. Microbiol. 54, 463473.CrossRefGoogle Scholar
Dassa, J., Fsihi, H., Marck, C., Dion, M., Kieffer-Bontemps, M. & Boquet, P. L. (1991). A new oxygen-regulated operon in Escherichia coli comprises the genes for a putative third cytochrome oxidase and for pH 2·5 acid phosphatase (appA). Mol. Gen. Genet. 229, 341352.CrossRefGoogle ScholarPubMed
D'Mello, R., Hill, S. & Poole, R. K. (1994). Determination of the oxygen affinities of terminal oxidases in Azotobacter vinelandii using the deoxygenation of oxyleghaemoglobin and oxymyoglobin: cytochrome bd is a low-affinity oxidase. Microbiology 140, 13951402.CrossRefGoogle Scholar
Douce, R. & Neuburger, M. (1989). The uniqueness of plant mitochondria. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 371414.CrossRefGoogle Scholar
Dowd, D. R., Yates-Siilata, K., Gurwitch, A. & Kamradt, M. (1995). Phosphorylation events during cAMP and calcium mediated apoptosis in lymphocytes. J. Cell. Biochem. Suppl. 19B, 271.Google Scholar
Eriksson, O. (1991). Effects of the general anaesthetic Propofol on the Ca2+-induced permeabilization of rat liver mitochondria. FEBS Lett. 279, 4548.CrossRefGoogle ScholarPubMed
Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science 240, 889895.Google Scholar
Friedrich, T., Steinmüller, K. & Weiss, H. (1995). The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEB Lett. 367, 107111.CrossRefGoogle ScholarPubMed
Glron-Calle, J., Zwizinski, C. W. & Schmid, H. H. O. (1994). Peroxidative damage to cardiac mitochondria. Arch. Biochem. Biophys. 315, 17.Google Scholar
Glagolev, A. N. (1980). Reception of the energy in bacterial taxis. J. Theor. Biol. 82, 171185.Google Scholar
Glockner, J. F., Norby, S.-W. & Swartz, H. M. (1992). Simultaneous measurement of intracellular and extracellular oxygen concentration using a nitroxide-liposome system. Magnetic Reson. in Med. 29, 1218.CrossRefGoogle Scholar
Goglia, F., Lanni, A., Barth, J. & Kadenbach, B. (1994). Interaction of diiodothyronines with isolated cytochrome c oxidase. FEBS Lett. 346, 295298.Google ScholarPubMed
Gonzalez-Garcia, M., Perez-Ballestero, R., Ding, L., Duan, L. & Boise, L. H. (1994). bcl-xL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 120, 30333042.CrossRefGoogle ScholarPubMed
Grigolava, I. V., Ksenzenko, M. Yu., Konstantinov, A. A., Tikhonov, A. N., Kerimov, T. M. & Ruuge, E. K. (1980). Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles. Biokhimiya 45, 7582(Russian).Google ScholarPubMed
Gruszecki, W. I., Bader, K. P. & Schmid, G. H. (1994). Light-induced oxygen uptake in tobacco chloroplasts explained in terms of chlororespiratory activity. Biochim. Biophys. Acta 1188, 335338.CrossRefGoogle Scholar
Guidot, D. M., McCord, J. M., Wright, R. M. & Repine, E. (1993). Absence of electron transport (Rho˚ State) restores growth of a manganese-superoxide dismutasedeficient Saccharomyces cerevisiae in hyperoxia. J. Biol. Chem. 268, 2669926703.CrossRefGoogle ScholarPubMed
Gunter, T. E., Gunter, K. K., Sheu, S.-S. & Gavin, C. E. (1994). Mitochondrial calcium transport: physilogical and pathological relevance. Am. J. Physiol. 267, C313C339.CrossRefGoogle Scholar
Hall, P. F. (1984). Cellular organization for steroidogenesis. Int. Rev. Cytology 86, 5395.CrossRefGoogle ScholarPubMed
Halliwell, B. (1992). Reactive oxygen species and the central nervous system. In: Free Radicals in the Brain (ed. Packer, L.Prilipko, L. and Christen, Y.), pp. 2140. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Harper, M.-E., Ballantyne, J. S., Leach, M. & Brand, M. D. (1993). Effects of thyroid hormones on oxidative phosphorylation. Biochem. Soc. Trans. 21, 785792.CrossRefGoogle ScholarPubMed
Harper, M.-E. & Brand, M. D. (1993). The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status. J. Biol. Chem. 268, 1485014860.CrossRefGoogle Scholar
Harris, E. J., Booth, R. & Cooper, M. B. (1982). The effect of superoxide generation on the ability of mitochondria to take up and retain Ca2+. FEBS Lett. 146, 267272.CrossRefGoogle ScholarPubMed
Hills, S., Viollet, S., Smith, A. T. & Anthony, C. (1990). Roles for entheric d-type cytochrome oxidase in N2 fixation and microaerobiosis. J. Bacterial. 172, 20712078.CrossRefGoogle Scholar
Hockenbery, D. M., Nunez, G., Milliman, C. T., Schreiber, R. D. & Korsmeyer, S. J. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334336.CrossRefGoogle ScholarPubMed
Hockenbery, D. M., Oltvai, Z. N., Yln, X.-M., Milliman, C. T., & Korsmeyer, S. J. (1993). Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241251.CrossRefGoogle Scholar
Hoffman, P., Morgan, T. V. & Der Vartanian, D. V. (1979). Respiratory-chain characteristics of mutants of Azotobacter vinelandii negative to tetramethyl-p-phenylenediamine oxidase. Eur.J. Biochem. 100, 1927.CrossRefGoogle ScholarPubMed
Hoffman, P., Morgan, T. V. & Der Vartanian, D. V. (1980). Respiratory properties of cytochrome-c-deficient mutants of Azotobacter vinelandii. Eur. J. Biochem. 110, 349354.CrossRefGoogle Scholar
Hopfer, U., Lehninger, A. L. & Thompson, T. E. (1968). Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc. Natn. Acad. Sci. USA 59, 484490.CrossRefGoogle ScholarPubMed
Horst, C., Rokos, H. & Seitz, H. J. (1989). Rapid stimulation of hepatic oxygen consumption by 3, 5-iodo-L-thyronine. Biochem. J. 261, 945950.Google Scholar
Horrum, M. A., Tobin, R. B. & Ecklund, R. E. (1995). Effects of 3, 3', 5-triiodo-Lthyronine (L-T3) and T3 analogues on mitochondrial function. Biochem. Mol. Biol. Intern. 35, 913920.Google ScholarPubMed
Jacobson, M. D., Burne, J. F., King, M. P., Miyashita, T., Reed, J. C. & Raff, M. C. (1993). Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361, 365369.Google Scholar
Jones, D. P. (1984). Effect of mitochondrial clustering on O2 supply in hepatocytes. Am. J. Physiol. 247, C83C89.CrossRefGoogle ScholarPubMed
Jones, D. P. (1986). Intracellular diffusion gradients of O2 and ATP. Am. J. Physiol. 250, C663C675.CrossRefGoogle ScholarPubMed
Jones, D. P. & Kennedy, F. G. (1986). Analysis of intracellular oxygenation of isolated adult cardiac myocytes. Am. J. Physiol. 250, C384C390.CrossRefGoogle ScholarPubMed
Johnson, T. E., Lithgow, G. L., Murakami, S., Tedesco, P. M., Duhon, S. A., Shook, D., White, T. M. & Melov, S. (1995). Dissection of the physiology of longlived mutants of C. elegans. Abstr. on Intern. Symp. Genetics of Death Glasgow.Google Scholar
Jung, D. W. & Brierly, G. P. (1981). Progesterone stimulates energy-dependent contraction of swollen heart mitochondria. Experientia 37, 237238.Google Scholar
Kane, D. J., Sarafian, T. A., Anton, R., Hahn, H., Gralla, E. B., Valentine, J. S., Ord, T. & Bredesen, D. E. (1993). Bcl-2 inhibition of neural death – decreased generation of reactive oxygen species. Science 262, 12741276.Google Scholar
Kashkarov, K. P., Vasilyeva, E. V. & Ruuge, E. K. (1994). Superoxide radical generation by the mitochondrial respiratory chain of isolated cardiomyocytes. Biochemistry (Moscow) 59, 813818(Russian).Google ScholarPubMed
Kelly, M. J. S., Poole, R. K., Yates, M. G. & Kenney, C. (1990). Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J. Bacteriol. 172, 60106019.Google Scholar
Kennedy, F. G. & Jones, D. P. (1986). Oxygen dependence of mitochondrial function in isolated rat cardiac myocytes. Am. J. Physiol. 250, C374C383.CrossRefGoogle ScholarPubMed
Köhnke, D., Ludwig, B. & Kadenbach, B. (1993). A threshold membrane potential accounts for controversial effects of fatty acids on mitochondrial oxidative phosphorylation. FEBS Lett. 336, 9094.CrossRefGoogle ScholarPubMed
Kon, K., Maeda, N., Sekiya, M., Shiga, T. & Suda, T. (1980). A method for studying oxygen diffusion barrier in erythrocytes: effects of haemoglobin content and membrane cholesterol. J. Physiol. 309, 569590.CrossRefGoogle ScholarPubMed
Konstantinov, A. A., Peskin, V. A., Popova, E. Yu., Khomutov, G. B. & Ruuge, E. K. (1987). Superoxide generation by the respiratory chain of tumor mitochondria. Biochim. Biophys. Acta 894, 110.CrossRefGoogle ScholarPubMed
Koths, K. E., Godchaux, W., Doeg, L. H. & Doeg, K. A. (1972). The effect of testosterone on the synthesis of mouse kidney mitochondrial and microsomal proteins in vivo and in vitro. Endocrinology 91, 125134.CrossRefGoogle ScholarPubMed
Kotlyar, A. B., Sled, V. D., Burbaev, D. S., Moroz, J. A. & Vinogradov, A. D. (1990). Coupling site and rotenone-sensitive ubisemiquinone in tightly coupled submitochondrial particles. FEBS Lett. 264, 1720.Google Scholar
Kragie, L. & Smiehorowski, R. (1994). Altered peripheral benzodiazepine receptor binding in cardiac and liver tissues from thyroidectomized rats. Life Sci. 55, 19111918.CrossRefGoogle ScholarPubMed
Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W. & Reed, J. C. (1993). Investigation of the subcellular distribution of the bcl-2 oncoprotein–residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53, 47014714.Google ScholarPubMed
Ksenzenko, M. Yu., Konstantinov, A. A., Tikhonov, A. N. & Ruuge, E. K. (1982). Inhibition of H2O2 and generation in British anti-Lewisite-treated respiratory chain. Biokhimiya 47, 15771579 (Russian).Google Scholar
Ksenzenko, M. Yu., Konstantinov, A. A., Khomutov, G. B., Tikhonov, A. N. & Ruuge, E. K. (1983). Effect of electron transfer inhibitors on superoxide generation in the cytochrome bc 1 site of the mitochondrial respiratory chain. FEBS Lett. 155, 1923.CrossRefGoogle ScholarPubMed
Ksenzenko, M. Yu., Konstantinov, A. A., Khomutov, G. B. & Ruuge, E. K. (1989). Studies of superoxide radical generation in the NADH: ubiquinone-reductase segment of the respiratory chain with the aid of a spin probe 2, 2, 6, 6-tetramethyl-4- oxopiperidine-N-oxyl. Biol. Membrany 6, 840849 (Russian).Google Scholar
Labonia, N., Müller, M. & Azzi, A. (1988). The effect of non-esterified fatty acids on the proton-pumping cytochrome c oxidase reconstituted into liposomes. Biochem. J. 254, 139145.Google Scholar
Lamb, C. J. (1994). Plant disease resistance genes in signal perception and transduction. Cell 76, 419422.CrossRefGoogle ScholarPubMed
Laszlo, D. J. & Taylor, B. L. (1981). Aerotaxis in Salmonella typhimurium: role of electron transport. J. Bacterial. 145, 9901001.CrossRefGoogle ScholarPubMed
Laurindo, F. R. M., da Luz, P. L., Uint, L., Rocha, T. F., Jaeger, R. G. & Lopes, E. A. (1991). Evidence for superoxide radical-dependent coronary vasospasm after angioplasty in intact dogs. Circulation 83, 17051715.Google Scholar
Lawrence, W. D., Davis, P. J., Blas, S. D. & Schoenl, M. (1984). Interaction of thyroid hormone and sex steroid on the rabbit reticulocyte membrane in vitro: control by 17-β estradiol and testosterone on thyroid hormone responsible Ca2+-ATPase activity. Arch. Biochim. Biophys. 235, 7885.CrossRefGoogle Scholar
Lloyd, D., Mellor, H. & Williams, J. L. (1983). Oxygen affinity of the respiratory chain of Acanthamoeba castellanii. Biochem. J. 214, 4751.Google Scholar
Lötscher, H. R., Winterhalter, K. H., Carafoli, E. & Richter, C. (1979). Hydroperoxides can modulate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria. Proc. Natn. Acad. Sci. USA 76, 43404344.CrossRefGoogle ScholarPubMed
Luft, R. (1994). The development of mitochondrial medicine. Proc. Natn. Acad. Sci. USA 91, 87318738.Google Scholar
Luvisetto, S., Schmehl, I., Intravaia, E., Conti, E. & Azzone, G. F. (1992). Mechanism of loss of thermodynamic control in mitochondria due to hyperthyroidism and temperature. J. Biol. Chem. 267, 1534815355.CrossRefGoogle ScholarPubMed
Massey, V. (1994). Activation of molecular oxygen by flavins and flavoproteins. J. Biol. Chem. 269, 2245922462.CrossRefGoogle ScholarPubMed
Miller, J. B. & Koshland, D. E. Jr. (1977). Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Proc. Natn. Acad. Sci. USA 74, 47525–4756.CrossRefGoogle ScholarPubMed
Miquel, J. (1995). The mitochondrial DNA injury theory of aging: concepts and supporting facts. Abstr. of Intern. Symp. Genetics of Death, Glasgow.Google Scholar
Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144148.CrossRefGoogle ScholarPubMed
Miyoshi, H. & Fujita, T. (1987). Quantitative analyses of uncoupling activity of SF6846 (2, 6-di-t-butyl-4-(2, 2-dicyanovinyl)phenol) and its analogs with spinach chloroplasts. Biochim. Biophys. Acta 894, 339345.CrossRefGoogle Scholar
Monaghan, P., Robertson, D., Amos, T. A. S., Dyer, M. J. S., Mason, D. Y. & Greaves, M. F. (1992). Ultrastructural localization of bcl-2 protein. J. Histochem. Cytochem. 40, 18191825.CrossRefGoogle ScholarPubMed
Müller, I. M., Rasmusson, A. G. & Fredlund, K. M. (1994). The role of NADP(H) in plant respiration. Biol. Membrany 11, 298303 (Russian).Google Scholar
Murphy, M. P. (1989). Slip and leak in mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta 977, 123141.CrossRefGoogle ScholarPubMed
Nagley, P., Linnane, A. W., Zhang, C., Liu, V. W. S., Baumer, A., Munday, A. D., Sriratana, A., Wolvetang, E. J., Lawen, A., Hill, J. S. & Kahl, S. B. (1995). Mitochondrial genetic damage and functional decline during ageing and oxidative stress. Abstr. of Intern. Symp. Genetics of Death, Glasgow.Google Scholar
Nicholls, D. G. (1974). The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur.J. Biochem. 50, 305315.CrossRefGoogle ScholarPubMed
Nicholls, D. G. & Locke, R. M. (1984). Thermogenic mechanisms in brown fat. Physiol. Rev. 64, 164.CrossRefGoogle ScholarPubMed
Ogurtsov, S. I., Wesela, I. W., Kamernitsky, A. N., Moshkovsky, Yu. Sh., Terekhina, A. I., Kharakhonicheva, N. V. & Kuznetsov, A. N. (1978 a). The study of binding of spin-label progesterone to serum albumin. Biofisika 23, 432435 (Russian).Google Scholar
Ogurtsov, S. I. & Kuznetsov, A. N. (1978 b). The study of binding of steroids to serum albumin by spin-probe technique. Biofisika 23, 538539 (Russian).Google Scholar
Okuda, M., Lee, H.-C., Kumar, C. & Chance, B. (1992). Comparison of the effect of a mitochondrial uncoupler, 2, 4-dinitrophenol and adrenaline on oxygen radical production in the isolated perfused rat liver. Acta Physiol. Scand. 145, 159168.CrossRefGoogle ScholarPubMed
Orr, W. C. & Sohal, R. S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 11281130.CrossRefGoogle ScholarPubMed
Orrenius, S. (1995). Signal transduction pathways in T lymphocyte apoptosis. J. Cell. Biochem. Suppl. 19B, 260.Google Scholar
Paraidathathu, T., Degroot, H. & Kehrer, J. P. (1992). Production of reactive oxygen by mitochondria from normoxic and hypoxic rat heart tissue. Free Rad. Biol.Med. 13, 289297.CrossRefGoogle ScholarPubMed
Petit, P. X., Lecoueur, H., Zorn, E., Dauguet, C., Mignotte, B. & Gougeon, M. (1995). Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J. Cell. Biol. 130, 157167.CrossRefGoogle ScholarPubMed
Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S. & Bernardi, P. (1994). The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J. Biol. Chem. 269, 1663816642.CrossRefGoogle ScholarPubMed
Podgorski, G. T., Longmuir, I. S., Knopp, J. A. & Benson, D. M. (1981). Use of an encapsulated fluorescent probe to measure intracellular J. Cell. Physiol. 107, 329334.CrossRefGoogle ScholarPubMed
Poole, R. K. (1994). Oxygen reactions with bacterial oxidases and globins: binding, reduction and regulation. Antonie van Leeuwenhoek 65, 289310.CrossRefGoogle ScholarPubMed
Porter, R. K. & Brand, M. D. (1993). Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature 362, 628630.CrossRefGoogle ScholarPubMed
Puustinen, A., Finel, M., Virkki, M. & Wikström, M. (1989). Cytochrome o (bo) is a proton pump in Paracoccus denitrificans and Escherichia coli. FEBS Lett. 249, 163167.CrossRefGoogle ScholarPubMed
Puustinen, A., Finel, M., Haltia, T., Gennis, R. B. & Wikstrom, M. (1991). Properties of the two terminal oxidases of Escherichia coli. Biochemistry 30, 39363942.Google Scholar
Rasmussen, U. B., Köhrle, J., Rokos, H. & Hesch, R.-D. (1989). Thyroid hormone effect on rat heart mitochondrial proteins and affinity labelling with AT-bromoacetyl-3, 3′, 5-triiodo-L-thyronine. Lack of direct effect on the adenine nucleotide translocase. FEBS Lett. 255, 385390.CrossRefGoogle ScholarPubMed
Ravanel, P. (1986). Uncoupling activity of a series of flavones and flavonols on isolated plant mitochondria. Phytochemistry 25, 10151020.CrossRefGoogle Scholar
Ravanel, P., Tissut, M. & Douce, R. (1986). Platanetin: a potent natural uncoupler and inhibitor of the exogenous NADH dehydrogenase in intact plant mitochondria. Plant Physiol. 80, 500504.CrossRefGoogle ScholarPubMed
Ribas-Carbo, M., Berry, J. A., Azcon-Bieto, J. & Siedow, J. N. (1994). The reaction of the plant mitochondrial cyanide-resistant alternative oxidase with oxygen. Biochim. Biophys. Acta 1188, 205212.CrossRefGoogle Scholar
Rolfe, D. F. S. & Brand, M. D. (1994). The contribution of mitochondrial proton leak to basal metabolic rate in the rat. 8th Europ. Bioenerg. Conf. Abstr. (Valencia), p. 101.Google Scholar
Romeu, A. M., Martino, E. E. & Stoppani, A. O. M. (1975). Structural requirements for the action of steroids as quenchers of albumin fluorescence. Biochim. Biophys. Acta. 409, 376386.Google Scholar
Schapira, A. H. V. (1995). Mitochondria, free radicals, neurodegeneration and aging. In: Oxidative Stress and Aging (ed. Cutler, R. G.Packer, L.Bertram, J. and Mori, A.), pp. 159169. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Selyama, A., Maeda, N. & Shiga, T. (1991). Optical measurement of perfused rat hindlimb muscle with relation of the oxygen metabolism. Japan. J. Physiol. 41, 449461.Google Scholar
Sergeev, P. V., Uliankina, T. I., Sejfulla, R. D., Grebenshchikov, Yu. B. & Lichtenstein, G. I. (1974). Study of the interaction of steroids with human serum albumin by the spin label method. Mol. Biologiya 8 206217 (Russian).Google ScholarPubMed
Shigenaga, M. K., Hagen, T. M. & Ames, B. N. (1994). Oxidative damage and mitochondrial decay in aging. Proc. Natn. Acad. Sci. USA 91, 1077110778.CrossRefGoogle ScholarPubMed
Shioi, J., Dang, C. V. & Taylor, B. L. (1987). Oxygen as attractant and reppelent in bacterial chemotaxis. J. Bacteriol. 169, 31183123.Google Scholar
Shioi, J. & Taylor, B. L. (1984). Oxygen taxis and proton motive force in Salmonella typhimuriun. J. Biol. Chem. 259, 1098310988.CrossRefGoogle Scholar
Skulachev, V. P. (1962). Interrelations of the respiratory chain oxidation and phosphorylation. Akad. Nauk SSSR, Moscow (Russian).Google Scholar
Skulachev, V. P. (1988). Membrane Bioenergetics, Berlin: Springer.CrossRefGoogle Scholar
Skulachev, V. P. (1991). Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 294, 158162.Google Scholar
Skulachev, V. P. (1994 a). Bioenergetics: the evolution of molecular mechanisms and the development of bioenergetic concepts. Antonie van Leeuwenhoek 65, 271284.Google Scholar
Skulachev, V. P. (1994 b). Chemiosmotic concept of the membrane bioenergetics: what is already clear and what is still waiting for elucidation? J. Bioenerg. Biomembr. 26, 589598CrossRefGoogle ScholarPubMed
Skulachev, V. P. (1994 c). Lowering of the intracellular O2 concentration as a special function of respiratory systems of the cells. Biochemistry (Moscow) 59, 19101912 (Russian).Google Scholar
Skulachev, V. P. (1995 a). Non-phosphorylating respiration as a mechanism to minimize formation of reactive oxygen species in the cell. Mol. Biologiya 29, 709715 (Russian).Google Scholar
Skulachev, V. P. (1995 b). The role of nonphosphorylating respiration in minimizing formation of reactive oxygen species. J. Mol. Med. 73, B55.Google Scholar
Skulachev, V. P., Sharaff, A. A., Jaguzhinsky, L. S., Jasaitis, A. A., Liberman, E. A. & Topali, V. P. (1968). The effects of uncouplers on mitochondria, respiratory enzyme complexes and artificial phospholipid membranes. Curr. Mol. Biol. 2, 981105.Google ScholarPubMed
Skulachev, V. P., Sharaf, A. A. & Liberman, E. A. (1967). Proton conductors in the respiratory chain and artificial phospholipid membranes. Nature 216, 718719.Google Scholar
Slater, A. F. G. & Orrenius, S. (1995). Oxidative stress and apoptosis. In: Oxidative Stress and Aging (ed. Cutler, R. G.Packer, L.Bertram, J. and Mori, A.), pp. 2125. Basel: Birkhauser Verlag.CrossRefGoogle Scholar
Soboll, S. (1993). Thyroid hormone action on mitochondrial energy transfer. Biochim. Biophys. Acta 1144, 116.Google Scholar
Starkov, A. A., Dedukhova, V. I. & Skulachev, V. P. (1994). 6-Ketocholestanol abolishes the effect of the most potent uncouplers of oxidative phosphorylation in mitochondria. FEBS Lett. 355, 305308.CrossRefGoogle ScholarPubMed
Starkov, A. A., Dedukhova, V. I., Bloch, D. A., Severina, I. I. & Skulachev, V. P. (1995). Some male sex hormones, progesterone and 6-ketocholestanol counteract uncoupling effects of low concentrations of the most active protonophores. In: Thirty Years of Progress in Mitochondrial Bioenergetics and Molecular Biology (ed. Palmieri, F. et al. , Amsterdam: Elsevier (Accepted).Google Scholar
Sterling, K. (1986). Direct thyroid hormone activation of mitochondria: the role of adenine nucleotide translocase. Endocrinology 119, 292295.CrossRefGoogle ScholarPubMed
Sterling, K. (1987). Direct thyroid hormone activation of mitochondria: identification of adenine nucleotide translocase (AdNT) as the hormone receptor. Transact. Ass. Am. Physicians 100, 284293.Google ScholarPubMed
Sterling, K. (1991). Thyroid hormone action: identification of the mitochondrial thyroid hormone receptor as adenine nucleotide translocase. Thyroid 1, 167171.CrossRefGoogle ScholarPubMed
Subczynski, W. K., Hyde, J. S. & Kusumi, A. (1989). Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natn. Acad. Sci. USA 86, 44744478.CrossRefGoogle ScholarPubMed
Subczynski, W. K., Hyde, J. S. & Kusumi, A. (1991). Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30, 85788590.CrossRefGoogle ScholarPubMed
Swartz, H. M. (1994). Measurements of intracellular concentrations of oxygen: experimental results and conceptual implications of an observed gradient between intracellular and extracellular concentrations of oxygen. In: Oxygen Transport to Tissue XV, (ed. Vaupel, P. et al. ), pp. 799806. New York: Plenum Press.CrossRefGoogle Scholar
Taylor, B. L. (1983a). How do bacteria find the optimal concentration of oxygen? Trends Biochem. Sci. 8, 438441.Google Scholar
Taylor, B. L. (1983 b). Role of proton motive force in sensory transduction in bacteria. Ann. Rev. Microbiol. 37, 551573.CrossRefGoogle ScholarPubMed
Taylor, B. L., Miller, J. B., Warrick, H. M. & Koshland, D. E. Jr. (1979). Electron acceptor taxis and blue light effect on bacterial chemotaxis. J. Bacteriol. 140, 567573.Google Scholar
Teare, J. P., Greenfild, S. M., Marway, J. S., Preedy, V. R., Punchard, N. A., Peters, T. J. & Thompson, R. P. (1993). Effect of thyroidectomy and adrenalectomy on changes in liver glutatione and malonaldehyde levels after ethanol injection. Free Radic. Biol. Med. 14, 655660.CrossRefGoogle Scholar
Terada, H. (1975). Some biochemical and physicochemical properties of the potent uncoupler SF 6847 (3, 5-di-ter-butyl-4-hydroxy-benzylidenemalononitrile). Biochim. Biophys. Ada 387, 519532.Google Scholar
Terada, H. (1981). The interaction of highly active uncouplers with mitochondria. Biochim. Biophys. Acta 639, 225242.CrossRefGoogle ScholarPubMed
Terada, H., Fukui, Y., Shinohara, Y. & Ju-chi, M. (1988). Unique action of a modified weakly acidic uncoupler without an acidic group, methylated SF 6847, as an inhibitor of oxidative phosphorylation with no uncoupling activity: possible identity of uncoupler binding protein. Biochim. Biophys. Acta 933, 193199.CrossRefGoogle ScholarPubMed
Trischler, H.-J., Packer, L. & Medori, R. (1994). Oxidative stress and mitochondria dysfunction in neurodegeneration. Biochem. Mol. Biol. Intern. 34, 169180.Google Scholar
Turrens, J. S. & Boveris, A. (1980). Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421427.Google Scholar
Turrens, J. F., Zeman, B. A., Levitt, J. G. & Crapo, J. D. (1982). The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217, 401410.CrossRefGoogle ScholarPubMed
Unemoto, T. & Hayashi, M. (1986). Subunit structure and electron transfer pathway in the sodium transport NADH: quinone reductase of a marine bacterium, Vibrio alginolyticus. EBEC 4, 68.Google Scholar
Vallejos, R. H. & Stoppani, A. O. M. (1967). Site-specific effects of steroids on mitochondrial metabolism. Biochim. Biophys. Acta 131, 295309.CrossRefGoogle ScholarPubMed
Van Den Bergen, C. W. M., Wagner, A. M., Krab, K. & Moore, A. L. (1994). The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Eur.J. Biochem. 226, 10711078.Google Scholar
Varricchio, F. & Sanadi, D. R. (1967). Inhibition of mitochondrial respiration by progesterone and an azasteroid. Arch. Biochim. Biophys. 121, 187193.Google Scholar
Verkhovskaya, M., Verkhovsky, M. & Wikström, M. (1992). pH Dependence of proton translocation by Escherichia coli. J. Biol. Chem. 267, 1455914562.Google Scholar
Vianello, A., Macri, F., Braidot, E. & Mokhova, E. N. (1995). Effect of 6-ketocholestanol on FCCP- and DNP-induced uncoupling in plant mitochondria. FEBS Lett. 365, 79.CrossRefGoogle ScholarPubMed
Vinogradov, A. D., Sled, V. D., Burbaev, D. S., Grivennikova, V. G., Moroz, I. A. & Ohnishi, T. (1995). Energy-dependent complex I-associated ubisemiquinones in submitochondrial particles. FEBS Lett. 370, 8387.Google Scholar
Wikström, M., Krab, K. & Saraste, M. (1981). Cytochrome oxidase - a synthesis. London: Academic Press.Google Scholar
Wilson, D. F. (1990). Contribution of diffusion to the oxygen dependence of energy metabolism in cells. Experientia 46, 11601162.Google Scholar
Wittenberg, B. A. & Wittenberg, J. B. (1985). Oxygen pressure gradients in isolated cardiac myocytes. J. Biol. Chem. 260, 65486554.Google Scholar
Wong, G. H. W. (1995). Protective roles of cytokines against radiation: induction of mitochondrial MnSOD. Biochim. Biophys. Acta 1271, 295–209.Google ScholarPubMed
Yaguzhinsky, L. S., Smirnova, E. G., Ratnikova, L. A., Kolesova, G. M. & Krasinskaya, I. P. (1973). Hydrophobic sites of the mitochondrial electron transfer system. J. Bioenerg. Biomembr. 5, 163174.Google Scholar
Yanagibashi, K., Ohno, Y., Kazwamura, M. & Hall, P. F. (1988). The regulation of intracellular transport of cholesterol in bovine adrenal cells: purification of a novel protein. Endocrinology 123, 20752082.CrossRefGoogle ScholarPubMed
Yielding, K. L., Tomkins, G. M., Munday, J. S. & Cowley, I. J. (1960). The effect of steroids on electron transport. J. Biol. Chem. 235, 34133416.CrossRefGoogle ScholarPubMed
Yoneda, M., Katsumata, K., Hayakawa, M., Tanaka, M. & Ozawa, T. (1995). Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochim. Biophys. Res. Commun. 209, 723729.CrossRefGoogle ScholarPubMed
Zoratti, M. & Szabo, I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Acta 1241, 139176.CrossRefGoogle ScholarPubMed