Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T02:38:14.905Z Has data issue: false hasContentIssue false

Relaxation studies of ion transport systems in lipid bilayer membranes

Published online by Cambridge University Press:  17 March 2009

P. Läuger
Affiliation:
Department of Biology, University of Konstanz, D-7750 Konstanz, Germany
R. Benz
Affiliation:
Department of Biology, University of Konstanz, D-7750 Konstanz, Germany
G. Stark
Affiliation:
Department of Biology, University of Konstanz, D-7750 Konstanz, Germany
E. Bamberg
Affiliation:
Department of Biology, University of Konstanz, D-7750 Konstanz, Germany
P. C. Jordan
Affiliation:
Department of Biology, University of Konstanz, D-7750 Konstanz, Germany
A. Fahr
Affiliation:
Department of Biology, University of Konstanz, D-7750 Konstanz, Germany
W. Brock
Affiliation:
Department of Biology, University of Konstanz, D-7750 Konstanz, Germany

Extract

Relaxation techniques have been widely used in kinetic studies of chemical reactions in homogeneous solution (Eigen & DeMayer, 1963). The principle of this method is well known: an external variable such as temperature or pressure is suddenly changed and the time course of a state parameter of the system such as concentration is recorded as it approaches a new steady value. Relaxation techniques can also be used for studying the rate of elementary processes in membranes. This method has proved particularly useful for the investigation of ion transport systems (ion carriers, channels, pumps) in artificial planar bilayer membranes. In this review we describe different relaxation techniques which have been developed for this purpose during the last years, as well as applications to a number of ion transport systems.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aityan, A. Kh., Markin, V. S. & Chizmadzhev, Yu. A. (1973). Theory of the passage of alternating current through synthetic membranes in the scheme of carriers. Biofizika 18, 7582.Google Scholar
Andersen, O. S. & Fuchs, M. (1975). Potential energy barriers to ion transport within lipid bilayers. Biophys. J. 15, 795830.CrossRefGoogle ScholarPubMed
Andersen, O. S., Feldberg, S., Nakadomari, H., Levy, S. & Mclaughlin, S. (1978). Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 21, 3570.CrossRefGoogle ScholarPubMed
Andersen, O. S. & Procopio, J. (1980). Ion movement through a gramicidin A channel. Acta physiol. scand. Suppl. 481, 2735.Google Scholar
Apell, H.-J., Bamberg, E., Alpes, H. & Läuger, P. (1977). Formation of ion channels by a negatively charged analog of gramicidin A. J. Membrane Biol. 31, 171188.CrossRefGoogle ScholarPubMed
Apell, H.-J., Bamberg, E. & Alpes, H. (1979). Dicarboxylic acid analogs of gramicidin A: Dimerization kinetics and single channel properties. J. Membrane Biol 50, 271285.CrossRefGoogle ScholarPubMed
Bamberg, E. & Läuger, P. (1973). Channel formation kinetics of gramicidin A in lipid bilayer membranes. J. Membrane Biol. 11, 177194.CrossRefGoogle ScholarPubMed
Bamberg, E. & Läuger, P. (1974). Temperature-dependent properties of gramicidin A channels. Biochim. biophys. Acta 367, 127133.CrossRefGoogle ScholarPubMed
Bamberg, E. & Benz, R. (1976). Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formation. Biochim. biophys. Acta 426, 570580.CrossRefGoogle ScholarPubMed
Bamberg, E. & Janko, K. (1976). Single channel conductance at lipid bilayer membranes in presence of monazomycin. Biochim. biophys. Acta 426, 447450.CrossRefGoogle ScholarPubMed
Bamberg, E., Alpes, H., Apell, H. J., Bradley, R., Härter, B., Quelle, M.-J. & Urry, D. W. (1979). Formation of ionic channels in black lipid membranes by succinic acid derivatives of gramicidin A. J. Membrane Biol. 50, 257270.CrossRefGoogle Scholar
Bamberg, E., Apell, H.-J., Dencher, N. A., Sperling, W., Stieve, H. & Läuger, P. (1979). Photocurrents generated by bacteriorhodopsin on planar bilayer membranes. Biophys. Struct. & Mechanism 5, 277292.CrossRefGoogle Scholar
Benz, R., Stark, G., Janko, K. & Läuger, P. (1973). Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature. J. Membrane Biol. 14, 339364.CrossRefGoogle ScholarPubMed
Benz, R. & Stark, G. (1975). Kinetics of macrotetrolide-induced ion transport across lipid bilayer membranes. Biochim. biophys. Acta 382, 2740.CrossRefGoogle ScholarPubMed
Benz, R., Gisin, B. F., Ting-Beall, H. P., Tosteson, D. C. & Läuger, P. (1976). Mechanism of ion transport through lipid bilayer membranes mediated by peptide cyclo-(D-Val-L-Pro-L-Val-D-Pro)3. Biochim. biophys. Acta 455, 665684.CrossRefGoogle Scholar
Benz, R. & Janko, K. (1976). Voltage-induced capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Biochim. biophys. Acta 455, 721738.CrossRefGoogle Scholar
Benz, R. & Läuger, P. (1976). Kinetic anaylsis of carrier-mediated ion transport by the charge-pulse technique. J. Membrane Biol. 27, 171191.CrossRefGoogle Scholar
Benz, R., Läuger, P. & Janko, K. (1976). Transport of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Biochim. biophys. Acta 455, 701720.CrossRefGoogle ScholarPubMed
Benz, R., Fröhlich, O. & Läuger, P. (1977). Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim. biophys. Acta 464, 465481.CrossRefGoogle ScholarPubMed
Benz, R. & Läuger, P. (1977). Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim. biophys. Acta 468, 245258.CrossRefGoogle ScholarPubMed
Benz, R. (1978). Alkali ion transport through lipid bilayer membranes mediated by Enniatin A and B and Beauvericin. J. Membrane Biol. 43, 367394.CrossRefGoogle Scholar
Benz, R. & Cros, D. (1978). Influence of sterols on ion transport through lipid bilayer membranes. Biochim. biophys. Acta 506, 265280.CrossRefGoogle ScholarPubMed
Benz, R. & Gisin, B. E. (1978). Influence of membrane structure on ion transport through lipid bilayer membranes. J. Membrane Biol. 40, 293314.CrossRefGoogle ScholarPubMed
Benz, R., Beckers, F. & Zimmermann, U. (1979). Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study. J. Membrane Biol. 48, 181204.CrossRefGoogle ScholarPubMed
Benz, R. & Zimmermann, U. (1980). Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim. biophys. Acta 597, 637642.CrossRefGoogle ScholarPubMed
Benz, R. & Conti, F. (1981). Structure of the squid axon membrane as derived from charge-pulse relaxation studies in the presence of adsorbed lipophilic ions. J. Membrane Biol. 59, 91104.CrossRefGoogle Scholar
Benz, R. & Nonner, W. (1981). Structure of the axolemma of frog myelinated nerve: Relaxation experiments with a lipophilic probe ion. J. Membrane Biol. 59, 127134.CrossRefGoogle ScholarPubMed
Boheim, G. & Benz, R. (1978). Charge-pulse relaxation studies with lipid bilayer membranes modified by alamethicin. Biochim. biophys. Acta 507, 262270CrossRefGoogle ScholarPubMed
Boheim, G.Irmscher, G. & Jung, G. (1978). Trichotoxin A-40, a new membrane exciting peptide. Part B. Voltage-dependent pore formation in bilayer lipid membranes and comparison with other alamethicin analogues. Biochim. biophys. Acta 507, 485506.CrossRefGoogle Scholar
Boheim, G. & Kolb, H.-A. (1978). Analysis of the multi-pore system of alamethicin in a lipid membrane. I. Voltage-jump current-relaxation measurements. J. Membrane Biol. 38, 99150.CrossRefGoogle Scholar
Borisova, M. P., Ermishkin, L. N., Liberman, F. A., Silberstein, A. Y. & Trofimov, E. M. (1974). Mechanism of conductivity of bimolecular lipid membranes in the presence of tetrachlorotrifluormethylbenzimidazole. J. Membrane Biol. 18, 243261.CrossRefGoogle Scholar
Brock, W., Stark, G. & Jordan, P. C. (1981). A laser-temperature-jump method for the study of the rate of transfer of hydrophobic ions and carriers across the interface of thin lipid membranes. Biophys. Chem. (in the Press).CrossRefGoogle Scholar
Bruner, L. J. (1975). The interaction of hydrophobic ions with lipid bilayer membranes. J. Membrane Biol. 22, 125141.CrossRefGoogle ScholarPubMed
Burgermeister, W. & Winkler-Oswatitsch, R. (1977). Complex formation of monovalent cations with biofunctional ligands. Top. Curr. Chem. 69, 91196.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Rev. mod. Physics 15, 189.CrossRefGoogle Scholar
Cohen, F. S., Eisenberg, M. & Mclaughlin, S. (1977). The kinetic mechanism of action of uncoupler of oxidative phosphorylation. J. Membrane Biol. 37, 361396.CrossRefGoogle ScholarPubMed
Cole, K. C. (1949). Dynamic electrical characteristics of the squid axon membrane. Archs Sci. Physiol. 3, 253258.Google Scholar
Dancshazy, Z. & Karvaly, B. (1976). Incorporation of bacteriorhodopsin into a lipid bilayer membrane: A photoelectric-spectroscopic study. FEBS Lett. 72, 136138.CrossRefGoogle Scholar
Defelice, L. (1981). Introduction to Membrane Noise. New York: Plenum Press.CrossRefGoogle Scholar
Delevie, R., Seidah, N. G. & Larkin, D. (1974). Tetraphenylborate adsorption onto an artificial ultrathin membrane. Electroanal. Chem. Interf. Electrochem. 48, 153159.CrossRefGoogle Scholar
Delevie, R., Thomas, J. W. & Abbey, K. M. (1975). Membrane admittance measurements under computer control. Electroanal. Chem. Interf. Electrochem. 62, 111125.CrossRefGoogle Scholar
Delevie, R. & Vukadin, D. (1975). Dipicrylamine transport across an ultrathin phosphatidylethanolamine membrane. Electroanal. Chem. Interf. Electrochem. 62, 95109.CrossRefGoogle Scholar
Delevie, R. & Seelig, P. F. (1981). On the admittance of lipid bilayer membranes. II. Uncouplers and ion carriers. J. electroanal. Chem. 117, 167183.CrossRefGoogle Scholar
Dilger, J. & Mclaughlin, S. (1979). Proton transport through membranes induced by weak acids: A study of two substituted benzimidazoles. J. Membrane Biol. 46, 359384.CrossRefGoogle Scholar
Drachev, L. A., Kaulen, A. D. & Skulachev, V. P. (1978). Time resolution of the intermediate steps of the bacteriorhodopsin-linked electrogenesis. FEBS Lett. 87, 161167.Google ScholarPubMed
Eigen, M. & Demayer, L. (1963). Relaxation methods. In Technique of Organic Chemistry, vol. VIII, part II (ed. Weissberger, A.), pp. 8951054, New York: Interscience.Google Scholar
Eisenberg, M., Hall, J. E. & Mead, C. A. (1973). The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J. Membrane Biol. 14, 143176.CrossRefGoogle ScholarPubMed
Eisenman, G., Sandblom, J. & Neher, E. (1978). Interactions in cation permeation through the gramicidin channel: Cs, Rb, K, Na, Li, TI, H, and effects of anion binding. Biophys. J. 22, 307340.CrossRefGoogle Scholar
Fahr, A., Läuger, P. & Bamberg, E. (1981). Photocurrent kinetics of purple-membrane sheets bound to planar bilayer membranes. J. Membrane Biol. 60, 5162.CrossRefGoogle Scholar
Feldberg, S. W. & Kissel, G. (1975). Charge-pulse studies of transport phenomena in bilayer membranes. I. Steady-state measurements of actin- and valinomycin-mediated transport in glycerol monooleate bilayers. J. Membrane Biol. 20, 269300.CrossRefGoogle ScholarPubMed
Feldberg, S. W. & Nakadomari, H. (1977). Charge-pulse studies of transport phenomena in bilayer membranes. II. Detailed theory of steady- state behaviour and application to valinomycin-mediated potassium transport. J. Membrane Biol. 31, 81102.CrossRefGoogle ScholarPubMed
Fettiplace, R., Andrews, D. M. & Haydon, D. A. (1971). The thickness, composition and structure of some lipid bilayers and natural membranes. J. Membrane Biol. 5, 277296.CrossRefGoogle ScholarPubMed
Frehland, E. & Läuger, P. (1974). Ion transport through pores: Transient phenomena. J. theor. Biol. 47, 189207.CrossRefGoogle ScholarPubMed
Frehland, E. & Stephan, W. (1979). Theory of single-file noise. Biochim. biophys. Acta 553, 326341.CrossRefGoogle ScholarPubMed
Fröhlich, O. (1979). Asymmetry of the gramicidin channel in bilayers of asymmetric lipid composition. II. Voltage-dependence of dimerization. J. Membrane Biol. 48, 385401.CrossRefGoogle ScholarPubMed
Gambale, F., Gliozzi, A. & Robello, M. (1973). Determination of rate constants in carrier-mediated diffusion through lipid bilayers. Biochim. biophys. Acta 330, 325334.CrossRefGoogle ScholarPubMed
Gavach, C. & Sandeaux, R. (1975). Non-mediated zero-voltage conductance of hydrophobic ions through lipid bilayer membranes. Biochim. biophys. Acta 413, 3344.CrossRefGoogle Scholar
Gordon, L. G. M. & Haydon, D. A. (1976). Kinetics and stability of alamethicin conducting channels in lipid bilayers. Biochim. biophys. Acta 436, 541556.CrossRefGoogle ScholarPubMed
Grell, E., Funk, T. & Eggers, F. (1975). Structure and dynamic properties of ion-specific antibiotics. In. Membranes – A series of advances, vol. III (ed. Eisenman, G.), pp. 1126. New York: Marcel Dekker, Inc.Google Scholar
Grinius, L. L., Jasaitis, A. A., Kadsianskas, Yu. P., Liberman, E. A., Skulachev, V. P., Topali, V. P., Tsofina, L. M. & Vladimirova, M. A. (1970). Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biocheim. biophys. Acta 216, 112.Google Scholar
Hanai, T., Haydon, D. A. & Taylor, J. (1964). An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions. Proc. R. Soc. Lond. A 281, 377391.Google Scholar
Haydon, D. A. & Hladky, S. B. (1972). Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5, 187282.CrossRefGoogle ScholarPubMed
Haydon, D. A. (1975). Functions of the lipid in bilayer permeability. Ann. N.Y. Acad. Sci. 264, 216.CrossRefGoogle Scholar
Herrmann, T. R. & Rayfield, G. W. (1978). The electrical response to light of bacteriorhodopsin in planar membranes. Biophys. J. 21, 111125.CrossRefGoogle ScholarPubMed
Hladky, S. B. & Haydon, D. A. (1972). Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies on the unit conductance channel. Biochim. biophys. Acta 274, 294312.CrossRefGoogle ScholarPubMed
Hladky, S. B. & Haydon, D. A. (1973). Membrane conductance and surface potential. Biochim. biophys. Acta 318, 464468.CrossRefGoogle Scholar
Hladky, S. B. (1975). Tests of the carrier model for ion transport by nonactin and trinactin. Biochim. biophys. Acta 375, 327349.CrossRefGoogle ScholarPubMed
Hladky, S. B. (1979 a). Ion transport and displacement currents with membrane-bound carriers: The theory for voltage-clamp currents, charge-pulse transients and admittance for symmetrical systems. J. Membrane Biol. 46, 213237,CrossRefGoogle ScholarPubMed
Hladky, S. B. (1979 b). The carrier mechanism. Curr. Top Membranes & Transp. 12, 53164.CrossRefGoogle Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). Currents carried by sodium and potassium through the membrane of the giant axon of Loligo. J. Physiol. 116, 449472.CrossRefGoogle ScholarPubMed
Hong, F. T. & Mauzerall, D. (1974). Interfacial photoreactions and chemical capacitance in lipid bilayers. Proc. natn. Acad. Sci. U.S.A. 71, 15641568.CrossRefGoogle ScholarPubMed
Hong, F. T. (1976). Charge transfer across pigmented bilayer lipid membranes and its interfaces. Photochem. & Photobiol. 24, 155189.CrossRefGoogle ScholarPubMed
Hong, F. T. & Montal, M. (1979). Bacteriorhodopsin in model membranes – A new component of the displacement photocurrent in the microsecond time scale. Biophys. J. 25, 465472.CrossRefGoogle ScholarPubMed
Huang, C. & Thompson, D. E. (1965). Properties of lipid bilayer membranes separating two aqueous phases: Determination of membrane thickness. J. molec. Biol. 13, 183193.CrossRefGoogle ScholarPubMed
Hurbner, J. S. (1979). Apparatus for recording light flash induced membrane voltage transients with 10 ns resolution. Photochem. & Photobiol. 30, 233242.CrossRefGoogle Scholar
Huebner, J. S. (1980). Current pulse-induced voltage variations in bilayer membranes. Biophys. J. 31, 279283.CrossRefGoogle ScholarPubMed
Janko, K. & Benz, R. (1977). Properties of lipid bilayer membranes made from lipids containing phytanic acid. Biochim. biophys. Acta 470, 816.CrossRefGoogle ScholarPubMed
Jordan, P. C. & Stark, G. (1979). Kinetics of transport of hydrophobic ions through lipid membranes including diffusion polarization in the aqueous phase. Biophys. Chem. 10, 273287.CrossRefGoogle ScholarPubMed
Ketterer, B., Neumcke, B. & Läuger, P. (1971). Transport mechanism of hydrophobic ions through lipid bilayer membranes. J. Membrane Biol. 5, 225245.CrossRefGoogle ScholarPubMed
Knoll, W. & Stark, G. (1975). An extended kinetic analysis of valinomycininduced Rb-transport through monoglyceride membranes. J. Membrane Biol. 25, 249270.CrossRefGoogle ScholarPubMed
Knoll, W. & Stark, G. (1977). Temperature-jump experiments on thin lipid membranes in the presence of valinomycin. J. Membrane Biol. 37, 1328.CrossRefGoogle ScholarPubMed
Kolb, H.-A., Läuger, P. & Bamberg, E. (1975). Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gram icidin A channels. J. Membrane Biol. 20, 133154.CrossRefGoogle Scholar
Kolb, H.-A. & Läuger, P. (1977). Electrical noise from lipid bilayer membranes in the presence of hydrophobic ions. J. Membrane Biol. 37, 321345.CrossRefGoogle ScholarPubMed
Kolb, H.-A. & Bamberg, E. (1977). Influence of membrane thickness and ion concentration on the properties of the gramicidin A channel. Auto-correlation, spectral power density, relaxation and single-channel studies. Biochim. biophys. Acta 464, 127141.CrossRefGoogle Scholar
Kolb, H.-A. & Läuger, P. (1978). Spectral analysis of current noise generated by carrier-mediated ion transport. J. Membrane Biol. 41, 167187.CrossRefGoogle Scholar
Kolb, H.-A. (1979). Conductance noise of monazomycin-doped bilayer membranes. J. Membrane Biol. 45, 277292.CrossRefGoogle ScholarPubMed
Kolb, H.-A. & Frehland, E. (1980). Noise-current generated by carrier- mediated ion transport at non-equilibrium. Biophys. Chem. 12, 2134.CrossRefGoogle ScholarPubMed
Kramers, H. A. (1940). Brownian motion in a field of force and the diffusional model of chemical reactions. Physica 7, 284304.CrossRefGoogle Scholar
Kudirka, J. M., Daum, P. H. & Enke, C. G. (1972). Comparison of coulostatic data analysis. Anatyt. Chem. 44, 309314.CrossRefGoogle Scholar
Laprade, R., Ciani, S., Eisenman, G. & Szabo, G. (1975). The kinetics of carrier-mediated ion permeation in lipid bilayers and its theoretical interpretation. In. Membranes – A Series of Advances, vol. III (ed. Eisenman, G.), pp. 127214, New York: Marcel Dekker.Google Scholar
Läuger, R. & Stark, G. (1970). Kinetics of carrier-mediated ion transport across lipid bilayer membranes. Biochim. biophys. Acta 211, 458466.CrossRefGoogle ScholarPubMed
Läuger, P. (1972). Carrier-mediated ion transport. Science, N.Y. 178, 2430.CrossRefGoogle ScholarPubMed
Läuger, P. & Neumcke, B. (1973). Theoretical analysis of ion conductance in lipid bilayer membranes. In Membranes – A Series of Advances vol. 2 (ed. Eisenman, G.), pp. 159. New York: Marcel Dekker.Google Scholar
Läuger, P., Stephan, W. & Frehland, E. (1980). Fluctuations of barrier structure in ionic channels. Biochim. biophys. Acta 602, 167180.CrossRefGoogle ScholarPubMed
Lebedev, A. V. & Boguslavskii, (1971). Experimental study of the mechanism of conductivity of artificial phospholipid membranes using the method of impedance measurement. Biofizika 16, 221229.Google Scholar
Leblanc, Jr. O. H. (1969). Tetraphenylborate conductance through lipid bilayer membranes. Biochim. biophys. Acta 193, 350360.CrossRefGoogle Scholar
Liberman, E. A. & Topaly, V. P. (1968). Selective transport of ions through bimolecular phospholipid membranes. Biochim. biophys. Acta 163, 125136.CrossRefGoogle ScholarPubMed
Markin, V. S., Grigor'ev, P. A. & Yermishkin, L. N. (1971). Forward passage of ions across lipid membranes. I. Mathematical model. Biofizika 16, 10111018.Google Scholar
Mauro, A., Nanavati, R. P. & Heyer, E. (1972). Time variant conductance of bilayer membranes treated with monazomycin and alamethicin. Proc. natn. Acad. Sci. U.S.A. 69, 37423744.CrossRefGoogle ScholarPubMed
McLaughlin, S. A. (1977). Electrostatic potentials at membrane-solution interfaces. Curr. Top Membranes & Transp. 9, 71144.CrossRefGoogle Scholar
McLaughlin, S. G. A. & Dilger, J. P. (1980). The transport of protons across membranes by weak acids. Physiol. Rev. 60/3, 825863.CrossRefGoogle ScholarPubMed
Melnik, E., Latorre, R., Hall, J. E. & Tosteson, D. C. (1977). Phloretin-induced changes in ion transport across lipid bilayer membranes. J. gen. Physiol. 69, 243257.CrossRefGoogle ScholarPubMed
Montal, M. & Mueller, P. (1972). Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. natn. Acad. Sci. U.S.A. 69, 35613566.CrossRefGoogle Scholar
Moore, L. E., Holt, J. P., Jr & Lindley, B. D. (1972). Laser temperature jump technique for relaxation studies of the ionic conductances in myelinated nerve fibers. Biophys. J. 12, 157174.CrossRefGoogle ScholarPubMed
Moore, L. E. (1975). Membrane conductance changes in single nodes of Ranvier, measured by laser-induced temperature-jump experiments Biochim. biophys. Acta 375, 115123.CrossRefGoogle ScholarPubMed
Moore, L. E. & Neher, E. (1976). Fluctuation and relaxation analysis of monazomycin-induced conductance in black lipid membranes. J. Membrane Biol. 27, 347362.CrossRefGoogle ScholarPubMed
Mueller, P., Rudin, D. O., Tien, H. T. & Wescot, W. D. (1962). Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. Lond. 194, 979980.CrossRefGoogle ScholarPubMed
Mueller, P. & Rudin, D. O. (1967). Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem. biophys. Res. Comm. 26, 398404.CrossRefGoogle ScholarPubMed
Mueller, P. & Rudin, D. O. (1968). Action potentials induced in bimolecular lipid membranes. Nature. Lond. 217, 713719.CrossRefGoogle Scholar
Mueller, P. & Rudin, D. O. (1969). Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions. Curr. Top. Bioenerg. 3, 157249.CrossRefGoogle Scholar
Mueller, P. (1976). Membrane excitation through voltage induced aggregation of channel precursors. Ann. N.Y. Acad. Sci. 264, 247265.CrossRefGoogle Scholar
Muller, R. U. & Finkelstein, A. (1972). Voltage-dependent conductance induced in thin lipid membranes by monazomycin. J. gen. Physiol. 60, 263284.CrossRefGoogle ScholarPubMed
Neumcke, B. & Läuger, P. (1969). Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst–Planck equations. Biophys. J. 9, 11601170.CrossRefGoogle ScholarPubMed
Neumcke, B. (1971). Diffusion polarization at lipid bilayer membranes. Biophysik 7, 95105.CrossRefGoogle Scholar
Neumcke, B. & Bamberg, E. (1975). The action of uncouplers on lipid bilayer membranes. In. Membranes – A Series of Advances, vol. III (ed. Eisenman, G.), pp. 215253. New York: Marcel Dekker.Google Scholar
Ovchinnikov, Yu. A., Ivanov, V. T. & Shkrob, A. M. (1974). Membrane-active Comptexones. Amsterdam: Elsevier.Google Scholar
Pagano, R. E., Ruysschaert, J. M. & Miller, I. R. (1972). The molecular composition of some lipid bilayer membranes in aqueous solution. J. Membrane Biol. 10, 1130.CrossRefGoogle ScholarPubMed
Paltauf, F., Hauser, H. & Phillips, M. C. (1971). Monolayer characteristics of some 1,2-diacyl, I-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water surface. Biochim. biophys. Acta 249, 539547.CrossRefGoogle Scholar
Parsegian, A. (1969). Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature. Lond. 221, 844846.CrossRefGoogle Scholar
Pickar, A. D. & Amos, W. D. (1976). Alternating current studies of charge carrier transport in lipid bilayers: Pentachlorophenol in lecithin- cholesterol membranes. Biochim. biophys. Acta 455, 3655.CrossRefGoogle ScholarPubMed
Pickar, A. D. & Benz, R. (1977). Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures. J. Membrane Biol. 44, 353376.CrossRefGoogle Scholar
Pohl, G. W., Knoll, W., Gisin, B. F. & Stark, G. (1976). Optical and electrical studies on dansyllysine-valinomycin in thin lipid membranes. Biophys. Struct. & Mechanism 2, 119137.CrossRefGoogle ScholarPubMed
Provencher, S. W. (1976 a). A Fourier method for the analysis of exponential decay curves. Biophys. J. 16, 2741.CrossRefGoogle ScholarPubMed
Provencher, S. W. (1976 b). An eigenfunction expansion method for the analysis of exponential decay curves. J. chem. Phys. 64, 27722777.CrossRefGoogle Scholar
Rangarajan, S. K., Seelig, P. F. & Delevie, R. (1979). On the admittance of lipid bilayer membranes. I. Membrane-permeable ions. J. electroanal. Chem. 100, 33.CrossRefGoogle Scholar
Rice, S. O. (1944). Mathematical analysis of random noise. Bell. Syst. tech. J. 23–24, 1162.Google Scholar
Sandblom, J., Hägglund, J. & Eriksson, N.E. (1975). Electrical relaxation process in black lipid membranes in the presence of a cation-selective ionophore. J. Membrane Biol. 23 119.CrossRefGoogle ScholarPubMed
Schindler, H. & Rosenbusch, J. P. (1978). Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc. natn. Acad. Sci. U.S.A. 75, 37513755.CrossRefGoogle ScholarPubMed
Schwarz, G. (1967). On dielectric relaxation due to chemical rate processes. J. Phys. Chem. 71, 40214030.CrossRefGoogle Scholar
Schwarz, G. (1978). On the physico-chemical basis of voltage-dependent molecular gating mechanisms in biological membranes. J. Membrane Biol. 43, 127148.CrossRefGoogle ScholarPubMed
Seta, P., Ormos, P.D'epenoux, P. & Gavach, C. (1980). Photocurrent response of bacteriorhodopsin absorbed on bimolecular lipid membranes. Biochim. biophys. Acta 591, 3752.CrossRefGoogle Scholar
Shemyakin, M. M., Ovchinnikov, Yu. A., Ivanov, V. T., Antonov, V. K., Vinogndova, E. J., Shkrob, A. M., Malenkov, G. G., Evstratov, A. V., Laine, J. A., Melnik, E. J. & Ryabova, J. D. (1969). Cyclodepsepeptides as chemical tools, for studying ionic transport through membranes. J. Membrane Biol. 1, 402430.CrossRefGoogle ScholarPubMed
Shieh, P. & Packer, L. (1976). Photo-induced potentials across a polymer stabilized planar membrane in the presence of bacteriorhodopsin. Biochem. biophys. Res. Commun. 71, 603609.CrossRefGoogle ScholarPubMed
Skinner, J. F. & Fuoss, R. M. (1964). Conductance of triisoamylbutylammonium and tetraphenylboride. J. Phys. Chem. 68, 18821885.CrossRefGoogle Scholar
Staerk, H. & Czerlinski, G. (1965). Nanosecond heating of aqueous systems by giant layer pulses. Nature. Lond. 205, 6364.CrossRefGoogle Scholar
Stark, G. & Benz, R. (1971). The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin. J. Membrane Biol. 5, 133153.CrossRefGoogle ScholarPubMed
Stark, G., Ketterer, B., Benz, R. & Läuger, P. (1971). The rate constants of valinomycin-mediated ion transport through thin lipid membranes. Biophys. J. II, 981994.CrossRefGoogle Scholar
Stark, G. & Gisin, B. F. (1979). Kinetics of ion transport in lipid membranes induced by lysine-valinomycin and derivatives. Biophys. Struct. & Mechanism 6, 3956.CrossRefGoogle ScholarPubMed
Stoeckenius, W., Lozier, R. M. & Bogomolni, R. A. (1979). Bacteriorhodopsin and the purple membrane of Halobacteria. Biochim. biophys. Acta 505, 215278.CrossRefGoogle ScholarPubMed
Strehlow, H. & Kalarickal, R. M. (1966). Über eine neue Temperatursprungmethode zur Messung schneller chemische Reaktionen. Ber. Bunsenges. Phys. Chem. 70, 139143.CrossRefGoogle Scholar
Szabo, G. (1974). Dual mechanism for the action of cholesterol on membrane permeability. Nature. Lond. 252, 4749.CrossRefGoogle ScholarPubMed
Szabo, G. (1976). The influence of dipole potentials on the magnitude and the kinetics of ion transport in lipid bilayer membranes. In Extreme Environment: Mechanisms of Microbial Adaptation, (ed. Heinrich, M. R.), pp. 321348. New York: Academic Press.CrossRefGoogle Scholar
Ting-beall, H. P., Tosteson, M. T., Gisin, B. F. & Tosteson, D. C. (1974). Effect of peptide PV on the ionic permeability of lipid bilayer membranes. J. gen. Physiol. 63, 492508.CrossRefGoogle ScholarPubMed
Trissl, H.-W., Darszon, A. & Montal, M. (1977). Rhodopsin in model membranes: Charge displacements in interfacial layers. Proc. natn. Acad. Sci. U.S.A. 74, 207210.CrossRefGoogle ScholarPubMed
Trissl, H.-W. & Montal, M. (1977). Electrical demonstration of rapid light-induced conformational changes in bacteriorhodopsin. Nature. Lond. 266, 655657.CrossRefGoogle ScholarPubMed
Trissl, H.-W. (1980). I. Novel capacitative electrode with a wide frequency range for measurements of flash-induced changes of interface potential at the oil–water interface. Mechanical construction and electrical characteristics of the electrode. Biochim. biophys. Acta 595, 8295.CrossRefGoogle ScholarPubMed
Urry, D. W. (1971). The gramicidin transmembrane channel: A proposed π (L, D) helix. Proc. natn. Acad. Sci. U.S.A. 68, 672676.CrossRefGoogle Scholar
Urry, D. W., Goodall, M. C., Glickson, J. S. & Mayers, D. F. (1971). The gramicidin A transmembrane channel: characteristicsof head-to-head dimerized π(L, D) helices. Proc. natn. Acad. Sci. U.S.A. 68, 19071911.CrossRefGoogle Scholar
Urry, D. W. (1972). A molecular theory of ion-conducting channels: A field- dependent transition between conducting and nonconducting conformations. Proc. nat. Acad. Sci. U.S.A. 69, 16101614.CrossRefGoogle Scholar
Veatch, W. & Stryer, L. (1977). The dimeric nature of the gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels. J. molec. Biol. 113, 89102.CrossRefGoogle ScholarPubMed
Vetter, K. I. (1967). Electrocheinical Kinetics. New York: Academic Press.Google Scholar
Wang, C.-C. & Bruner, L. J. (1978). Lipid-dependent and phloretin-induced modifications of dipicrylamine adsorption by bilayer membranes. Nature, London. 272, 268270.CrossRefGoogle ScholarPubMed
White, S. H. (1975). Phase transitions in planar bilayer membranes. Biophys. J. 15, 95117.CrossRefGoogle ScholarPubMed
Wulf, J., Bena, R. & Pohl, W. G. (1977). Properties of bilayer membranes in the presence of dipicrylamine. A comparative study by optical absorption and electrical relaxation measurements. Biochim. biophys. Acta 465, 429442.CrossRefGoogle ScholarPubMed
Zingsheim, H. P. & Neher, E. (1974). The equivalence of fluctuation analysis and chemical relaxation measurements: A kinetic study of ion pore formation in thin lipid membranes. Biophys. Chem. 2, 197207.CrossRefGoogle ScholarPubMed
Zwolinsky, B. J., Eyring, H. & Reese, C. E.Diffusion and Membrane permeability. J. Phys. Chem. 53, 14261453.CrossRefGoogle Scholar