Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T02:10:43.924Z Has data issue: false hasContentIssue false

Progress in high resolution atomic force microscopy in biology

Published online by Cambridge University Press:  17 March 2009

Zhifeng Shao
Affiliation:
Department of Molecular Physiology & Biological Physics, and Biophysics Program, University of Virginia School of Medicine, Box 440, Charlottesville, Virginia 22008
Jie Yang
Affiliation:
Department of Molecular Physiology & Biological Physics, and Biophysics Program, University of Virginia School of Medicine, Box 440, Charlottesville, Virginia 22008

Extract

The atomic force microscope (AFM) was invented by Binnig, Quate and Gerber less than 10 years ago (Binnig et al. 1986). In their first prototype, a piece of goldfoil was used as the cantilever, with a crushed diamond tip mounted at the end. On the back of the cantilever, a tunnelling junction was used to monitor the deflection of the cantilever (the gold-foil) when the specimen was scanned with the tip in contact with the surface. Thus, the surface topography of the specimen was obtained with a resolution critically dependent on the sharpness of the tip provided the deformation of the specimen was not serious. Even with such a crude set-up, they managed to obtain a lateral resolution of ˜ 30 Å and a vertical resolution of better than 1 Å on an amorphous A12O3 surface. The operating principle of such an instrument is deceptively simple. However, such an arrangement was inconvenient for routine operations and unsuitable for imaging hydrated specimens, because the tunnelling junction is easily contaminated in air and works poorly in aqueous solutions (Alexander et al. 1989). As a result, the application of this type of AFM to biological samples was rare (Engel, 1991).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, T. R., Akamine, S., Carver, T. E. & Quate, C. F. (1990). Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A8, 33863396.CrossRefGoogle Scholar
Alexander, S., Hellemans, L., Marti, O., Schneir, J., Elings, V. & Hansma, P. K. (1989). An atomic resolution atomic force microscope implemented using an optical lever. J. appl. Phys. 65, 164167.CrossRefGoogle Scholar
Allen, M. J., Dong, X. F., O'Neil, T. E., Yau, P., Kowalczykowski, S. C., Gatewood, J., Balhorn, R. & Bradbury, E. M. (1993). Atomic force microscopy measurements of nucleosome cores assembled along defined DNA sequences. Biochemistry, Philad. 32, 83908396.CrossRefGoogle ScholarPubMed
Allison, D. P., Warmack, R. J., Bottomley, L. A., Thundat, T., Brown, G. M., Woychik, R. P., Schrick, J. J., Jacobson, K. B. & Ferrell, T. L. (1992). Scanning tuneling microscopy of DNA: a novel technique using radiolabeled DNA to evaluate chemically mediated attachment of DNA to surfaces. Ultramicroscopy 4244, 10881094.CrossRefGoogle Scholar
Amrein, M., Durr, R., Staslak, A., Gross, H. & Travaglini, G. (1989). Scanning tunneling microscopy of uncoated recA-DNA complexes. Science, N. Y. 243, 17081711.CrossRefGoogle ScholarPubMed
Armstrong, G. D., Howard, L. A. & Peppler, M. S. (1988). Use of glycosyl-transferases to restore activity to asialogalatofetuin. J. biol. Chem. 273, 86778684.CrossRefGoogle Scholar
Arscott, P. G., Lee, G., Bloomfield, V. A. & Evans, D. F. (1989). Scanning tunneling microscopy of Z-DNA. Nature, Lond. 339, 484486.CrossRefGoogle ScholarPubMed
Baumeister, W., Barth, M., Hegerl, R., Guckenberger, R., Hahn, M. & Saxton, W. O. (1986). Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. molec. biol. 187, 241253.CrossRefGoogle ScholarPubMed
Bezanilla, M., Drake, B., Nudler, E., Kashlev, M., Hansma, P. K. & Hansma, H. G. (1994). Motion and enzymatic degradation of DNA in the atomic force microscopy. Biophys. J. 67, 24542459.CrossRefGoogle Scholar
Billeter, M. (1992). Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Q. Rev. Biophys. 25, 325377.CrossRefGoogle ScholarPubMed
Binnig, G., Quate, C. F. & Gerber, Ch. (1986). Atomic Force Microscope. Phys. Rev. Lett. 56, 930933.CrossRefGoogle ScholarPubMed
Bolz, R. E. & Tuve, G. L. (eds, 1973). Handbook of Tables for Applied Engineering Science. Cleveland: CRC Press.Google Scholar
Boni, L. T., Minchey, S. R., Perkins, W. R., Ahl, P. L., Slater, J. L., Tate, M. W., Gruner, S. M. & Janoff, A. S. (1993). Curvature dependent induction of the interdigitated gel phase in DPPC vesicles. Biochim. biophys. Acta 1146, 247257.CrossRefGoogle ScholarPubMed
Braunstein, D. & Spudich, A. (1994). Structure and activation dynamics of RBL-2H3 cells observed with scanning force microscopy. Biophys. J. 66, 17171725.CrossRefGoogle ScholarPubMed
Brennan, M. J., David, J. L., Kenimer, J. G. & Manclark, C. R. (1988). Lectin-like binding of pertussis toxin to a 165-kilodalton Chinese hamster ovary cell glycoprotein. J. biol. Chem. 263, 48954899.CrossRefGoogle ScholarPubMed
Brian, A. A. & McConnell, H. M. (1984). Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc. natn. Acad. Sci. U.S.A. 81, 61596163.CrossRefGoogle ScholarPubMed
Buldt, G., Gally, H. U., Seelig, A., Seelig, J. & Zaccai, G. (1978). Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature, Lond. 271, 182184.CrossRefGoogle ScholarPubMed
Bustamante, C., Keller, D. & Yang, G. (1993). Scanning force microscopy of nucleic acids and nucleoprotein assemblies. Curr. Opin. Struct. Biol. 3, 363372.CrossRefGoogle Scholar
Bustamante, C., Vesenka, J., Tang, C. L., Rees, W., Guthod, M. & Keller, R. (1992). Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31, 2226.CrossRefGoogle ScholarPubMed
Butt, H.-J. (1991 a). Electrostatic interaction in atomic force microscopy. Biophys. J. 60, 777785.CrossRefGoogle ScholarPubMed
Butt, H.-J. (1991 b). Measuring electrostatic, van de Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60, 14381444.CrossRefGoogle Scholar
Butt, H.-J. (1992). Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. Biophys. J. 63, 578582.CrossRefGoogle ScholarPubMed
Butt, H.-J., Downing, K. H. & Hansma, P. K. (1990 a). Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys. J. 58, 14731480.CrossRefGoogle ScholarPubMed
Butt, H.-J., Siedle, P., Seifert, K., Fendler, K., Seeger, T., Bamberg, E., Weisenhorn, A. L., Goldie, K. & Engel, A. (1993). Scan speed limit in atomic force microscopy. J. Microsc. 169, 7584.CrossRefGoogle Scholar
Butt, H.-J., Wolff, E. K., Gould, S. A. C., Northern, B. D., Perterson, C. M. & Hansma, P. K. (1990 b). Imaging cells with the atomic force microscope. J. Struct. Biol. 105, 5461.CrossRefGoogle ScholarPubMed
Cantor, C. R. & Schimmel, P. R. (1980). Biophysical Chemistry. New York: Freeman.Google Scholar
Capaldi, R. A. (1977). Membrane Proteins and Their Interactions with Lipids. New York: Marcell Dekker Inc.Google Scholar
Carlson, J. M. & Sethna, J. P. (1987). Theory of the ripple phase in hydrated phospholipid bilayers. Phys. Rev. A 36, 33593374.CrossRefGoogle ScholarPubMed
Chalmers, S. A., Gossard, A. C., Weisenhorn, A. L., Gould, S. A. C, Drake, B. & Hansma, P. K. (1989). Determination of tilted superlattice structure by atomic force microscopy. Appl. Phys. Lett. 55, 24912493.CrossRefGoogle Scholar
Clemmer, C. R. & Beebe, T. P. Jr. (1991). Graphite: a mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science, N. Y. 251, 640642.CrossRefGoogle ScholarPubMed
Cleveland, J. P., Manne, S., Bocek, D. & Hansma, P. K. (1992). A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. scient. Instrum. 64, 403405.CrossRefGoogle Scholar
Cricenti, A., Selci, S., Felici, A. C., Generosi, R., Gori, E., Djaczenko, W. & Chiarotti, G. (1989). Molecular Structure of DNA by Scanning Tunneling Microscopy. Science, N.Y. 245, 12261227.CrossRefGoogle ScholarPubMed
Crothers, D. M., Drak, J., Kahn, J. D. & Levene, S. D. (1992). DNA bending, flexibility, and helical repeat by cyclization kinetics. Meth. Enzym. 212, 329.CrossRefGoogle ScholarPubMed
Crothers, D. M., Gartenberg, M. R. & Shrader, T. E. (1991). DNA bending in DNA-protein complexes. Meth. Enzym. 208, 118147.CrossRefGoogle Scholar
Doniach, S. (1979). A thermodynamic model for the monoclinic (ripple) phase of hydrated phospholipid bilayers. J. chem. Phys. 170, 45874596.CrossRefGoogle Scholar
Dorrington, K. L. (1979). The theory of viscoelasticity in biomaterials. In The Mechanical Properties of Biological Materials. Cambridge: Cambridge University Press.Google Scholar
Dorset, D. L. (1990). Direct determination of crystallographic phases for diffraction data from phospholipid multilamellar arrays. Biophys. J. 58, 10771087.CrossRefGoogle ScholarPubMed
Dorset, D. L., Beckmann, E. & Zemlin, F. (1990). Direct determination of phospholipid lamellar structure at 0·34 nm resolution. Proc. natn. Acad. Sci. U.S.A. 87, 75707573.CrossRefGoogle ScholarPubMed
Drake, B., Prater, C. B., Weisenhorn, A. L., Gould, S. A. C., Albrecht, T. R., Quate, C. F., Cannell, D. S., Hansma, H. G. & Hansma, P. K. (1989). Imaging crystals, polymers, and processes in water with the atomic force microscope. Science, N.Y. 243, 15861589.CrossRefGoogle ScholarPubMed
Driscoll, R. J., Yougquist, M. G. & Baldeschwieler, J. D. (1990). Atomic-scale imaging of DNA using scanning tunneling microscopy. Nature, Lond. 346, 294296.CrossRefGoogle Scholar
Ducker, W. A. & Cook, R. F. (1990). Rapid measurement of static and dynamic surface forces. Appl. Phys. Lett. 56, 24082410.CrossRefGoogle Scholar
Ducker, W. A., Senden, T. J. & Pashley, R. M. (1991). Direct measurement of colloidal forces using an atomic force microscope. Nature, Lond. 353, 239241.CrossRefGoogle Scholar
Dunlap, D. D. & Bustamante, C. (1989). Images of Single-stranded Nucleic Acids by Scanning Tunneling Microscopy. Nature, Lond. 342, 204206.CrossRefGoogle Scholar
Dykstra, M. J. (1992). Biological Electron Microscopy. New York: Plenum Publication Corp.CrossRefGoogle Scholar
Edidin, M. & Stroynowski, I. (1991). Differences between the lateral organization of conventional and inositol phospholipid-anchored membrane proteins. A further definition of micrometer scale membrane domains. J. Cell Biol. 112, 11431150.CrossRefGoogle ScholarPubMed
Engel, A. (1991). Biological applications of scanning probe microscopes. A. Rev. Biophys. Biophys. Chem. 20, 79108.CrossRefGoogle ScholarPubMed
Fair, R. B. (1981). Physics and chemistry of impurity diffusion and oxidation of silicon. In Silicon Integrated Circuits, Part B (ed. Kahng, Dawon), pp. 1109. New York: Academic Press.Google Scholar
Florin, E.-L., Moy, V. T. & Gaub, H. (1994). Adhesion forces between individual ligand-receptor pairs. Science, N.Y. 264, 415417.CrossRefGoogle ScholarPubMed
Frank, J., Shimkin, B. & Dowse, H. (1981). Spider – a modular software system for electron image processing. Ultramicroscopy 6, 343358.CrossRefGoogle Scholar
Frank, J. (1989). Image analysis of single macromolecules. Electron Microsc. Rev. 2, 5374.CrossRefGoogle ScholarPubMed
Freifelder, D., Kleinschmidt, A. K. & Sinsheimer, R. L. (1964). Electron microscopy of single-stranded DNA: circularity of DNA of bacteriophage fX 174. Science, N. Y. 143, 254255.CrossRefGoogle Scholar
Fritz, M., Radmacher, M. & Gaub, H. E. (1994). Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys. J. 66, 13281334.CrossRefGoogle ScholarPubMed
Giessibl, F. J. & Binnig, G. (1992). Investigation of the (001) cleavage plane of potassium bromide with an atomic force microscope at 4·2 K in ultra-high vacuum. Ultramicroscopy 4244, 281289.CrossRefGoogle Scholar
Giessibl, F. J., Gerberm, Ch. & Binnig, G. (1991). A low-temperature atomic force/xscanning tunneling microscope for ultrahigh vacuum. J. Vac. Sci. Technol. B9, 984988.CrossRefGoogle Scholar
Glaeser, R. M. (1994). Probing toward atomic resolution in molecular topography. Proc. natn. Acad. Sci. U.S.A. 91, 19811982.CrossRefGoogle ScholarPubMed
Glaser, M. (1993). Lipid domains in biological membranes. Curr. Opin. Struct. Biol. 3, 475481.CrossRefGoogle Scholar
Goldie, K. N., Panté, N., Engel, A. & Aebi, U. (1994). Exploring native nuclear pore complex structure and conformation by scanning force microscopy in physiological buffers. J. Vac. Sci. Technol. B12, 14821485.CrossRefGoogle Scholar
Guckenberger, R., Wiegrabe, W., Hillebrand, A., Hartmann, T., Wang, Z. & Baumeister, W. (1989). Scanning tunneling microscopy of a hydrated bacterial surface protein. Ultramicroscopy 31, 327332.CrossRefGoogle Scholar
Guckenberger, R., Heim, M., Cevc, G., Knapp, H., Wiegrabe, W. & Hlllebrand, A. (1994). Scanning tunneling microscopy of insulators and biological specimens based on lateral conductivity of ultrathin water films. Science, N.Y. 266, 15381540.CrossRefGoogle ScholarPubMed
Haberle, W., Horber, J. K. H. & Binnig, G. (1991). Force microscopy of living cells. J. Vac. Sci. Tehnol. B9, 12101213.Google Scholar
Haberle, W., Horber, J. K. H., Ohnesorge, F., Smith, D. P. E. & Binnig, G. (1992). In situ investigation of single living cells infected by viruses. Ultramicroscopy 4244, 11611167.CrossRefGoogle ScholarPubMed
Hagerman, P. J. (1984). Evidence for the existence of stable curvature of DNA in solution. Proc. natn. Acad. Sci. U.S.A. 81, 46324636.CrossRefGoogle ScholarPubMed
Han, W., Mou, J., Sheng, J., Yang, J. & Shao, Z. (1995). Biological atomic force microscopy below 100 K. (Submitted.)Google Scholar
Hansma, H. G. & Hoh, J. (1994). Biomolecular imaging with the atomic force microscope. A. Rev. Biophys. Biomol. Struct. 23, 115128.CrossRefGoogle ScholarPubMed
Hansma, H. G. (1994). Atomic force microscopy of ligand-induced DNA bending. Bull. Am. phys. Soc. 39, 912.Google Scholar
Hansma, H. G., Bezanilla, H., Zenhausern, F., Adrian, M. & Sinsheimer, R. L. (1993 a). Atomic force microscopy of DNA in aqueous solutions. Nucl. Acids Res. 21, 505512.CrossRefGoogle ScholarPubMed
Hansma, H. G., Browne, K. A., Bezanilla, M. & Bruice, T. C. (1994). Binding and straightening of DNA induced by the same ligand: characterization with the atomic force microscope. Biochemistry, Philad. 33, 84368441.CrossRefGoogle ScholarPubMed
Hansma, H. G., Sinsheimer, R. L., Groppe, J., Bruice, T. C., Elings, V., Gurley, G., Bezanilla, M., Mastrangelo, I. A., Hough, P. V. C. & Hansma, P. K. (1993 b). Recent advances in atomic force microscopy of DNA. Scanning 15, 296299.CrossRefGoogle ScholarPubMed
Hansma, H. G., Sinsheimer, R. L., Li, M.-Q. & Hansma, P. K. (1922 a). Atomic force microscopy of single- and double-stranded DNA. Nucl. Acids Res. 20, 35853590.CrossRefGoogle Scholar
Hansma, H. G., Vesenka, J., Siegerist, C., Kelderman, G., Morrett, H., Sinsheimer, P. L., Elings, V., Bustamante, C. & Hansma, P. K. (1992 b). Reproducible imaging and dissection of plasmid DNA under liquid with atomic force microscopy. Science, N.Y. 256, 11801184.CrossRefGoogle Scholar
Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B., Massie, J., Fukunaga, L., Gurley, J. & Elings, V. (1994). Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 17381740.CrossRefGoogle Scholar
Hausman, S. Z. & Burns, D. L. (1993). Binding of pertussis toxin to lipid vesicles containing glycolipids. Infect. Immun. 61, 335337.CrossRefGoogle ScholarPubMed
Heckl, W. M. & Binnig, G. (1992). Domain-walls on graphite mimic DNA. Ultramicroscopy 4244, 10731078.CrossRefGoogle ScholarPubMed
Heckl, W. M., Smith, D. P. E., Binnig, G., Klagges, H., Hansch, T. W. & Maddocks, J. (1992). Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proc. natn. Acad. Sci. U.S.A. 88, 80038005.CrossRefGoogle Scholar
Henderson, E. (1994). Imaging of living cells by atomic force microscopy. Prog. Surface Sci. 46, 3960.CrossRefGoogle Scholar
Henderson, E, Hayelon, P. G. & Sakaguchi, D. S. (1992). Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science, N.Y. 257, 19441946.Google Scholar
Hentschel, M. P. & Rustichelli, F. (1991). Structure of the ripple phase Pβ in hydrated phosphatidylcholine multimembranes. Phys. Rev. Lett. 66, 903906.CrossRefGoogle Scholar
Heuser, J. (1989). Protocol for 3-D visualization of molecules on mica via the quickfreeze, deep-etch technique. J. Electron. Microsc. Tech. 13, 244263.CrossRefGoogle ScholarPubMed
Hoh, J. H. & Engel, A. (1993). Friction effects on force measurements with an atomic force microscope. Langmuir 9, 33103312.CrossRefGoogle Scholar
Hoh, J. H. & Hansma, P. K. (1992). Atomic force microscopy for high-resolution imaging in cell biology. Trends in Cell Biol. 2, 208213.CrossRefGoogle ScholarPubMed
Hoh, J. H., Lal, R., John, S. A., Revel, J.-P. & Arnsdorf, M. F. (1991). Atomic force microscopy and dissection of gap junctions. Science, N.Y. 253, 14051408.CrossRefGoogle ScholarPubMed
Hoh, J. H., Sosinsky, G. E., Revel, J.-P. & Hansma, P. K. (1993). Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys. J. 65, 149163.CrossRefGoogle Scholar
Huang, C. & Thompson, T. E. (1974). Preparation of homogeneous, single-walled phosphatidylcholine vesicles. In Methods in Enzymology, vol. XXXII (ed. Fleischer, S. and Packer, L.), pp. 485489. New York: Academic Press.Google Scholar
Huang, C. (1969). Studies on phosphatidylcholine vesicles: Formation and physical characteristics. Biochemistry, Philad. 8, 344352.CrossRefGoogle ScholarPubMed
Huang, C., Mason, J. T. & Levin, I. W. (1983). Raman spectroscopic study of saturated mixed-chain phosphatidylcholine multilamellar dispersions. Biochemistry, Philad. 22, 27752780.CrossRefGoogle ScholarPubMed
Hui, S. W., Mason, J. T. & Huang, C. (1984). Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry, Philad. 23, 55705577.CrossRefGoogle ScholarPubMed
Iben, I. E. T., Braunstein, D., Doster, W., Frauenfelder, H., Hong, M. K., Johnson, J. B., Luck, S., Ormos, P., Schulte, A., Steinbach, P. J., Xie, A. H. & Young, R. D. (1989). Glassy behavior of a protein. Phys. Rev. Lett. 62, 19161919.CrossRefGoogle ScholarPubMed
Ill, C. R., Keivens, V. M., Hale, J. E., Nakamura, K. K., Jue, R. A., Cheng, S., Melcher, E. D., Drake, B. & Smith, M. C. (1993). A COOH-terminated peptide confers regiospecific orientation and facilitates atomic force microscopy of an IgG1 Biophys. J. 64, 919924.CrossRefGoogle Scholar
Israelachvili, J. (1992). Intermolecular and Surface Forces, 2nd ed. New York: Academic Press.Google Scholar
Israelachvili, J. N. & Pashley, R. M. (1983). Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature, Lond. 306, 249250.CrossRefGoogle Scholar
Jacobson, K. & Vaz, W. L. C. (eds) (1992). Comments on Molecular and Cellular Biophysics, vol. 8, Domains in Biological Membranes. Gordon and Breach Science Publishers.Google Scholar
Janiak, M. J., Small, D. M. & Shipley, G. G. (1976). Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl- and dipalmitoyllecithin. Biochemistry 21, 45754580.CrossRefGoogle Scholar
Jap, B. K., Zulauf, M., Scheybani, T., Hefti, A., Baumeister, W., Aebi, U. & Engel, A. (1992). 2D crystallization: from art to science. Ultramicroscopy 46, 4584.CrossRefGoogle ScholarPubMed
Jing, T. W., Jeffrey, A. M., DeRose, J. A., Lyubchenko, Y. L., Shlyakhtenko, L. S., Harrington, R. E., Appella, E., Larsen, J., Vaught, A., Rekesh, D., Lu, F.-X. & Lindsay, S. M. (1993). Structure of hydrated oligonucleotides studied by in-situ scanning tunneling microscopy. Proc. natn. Acad. Sci. U.S.A. 90, 89348938.CrossRefGoogle ScholarPubMed
Kalb, E. & Tamm, L. K. (1992). Incorporation of cytochrome b 5 into supported phospholipid bilayers by vesicle fusion to supported monolayers. Thin Solid Films 210/211, 763765.CrossRefGoogle Scholar
Kaneko, R., Oguchi, S., Hara, S., Matsuda, R., Okada, T., Ogawa, H. & Nakamura, Y. (1992). Atomic force microscope coupled with an optical microscope. Ultramicroscopy 4244, 15421548.CrossRefGoogle Scholar
Karrasch, S., Dolder, M., Schabert, F., Ramsden, J. & Engel, A. (1993). Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 24372446.CrossRefGoogle ScholarPubMed
Karrasch, S., Hegerl, R., Hoh, J. H., Baumeister, W. & Engel, A. (1994). Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc. natn. Acad. Sci. U.S.A. 91, 836838.CrossRefGoogle Scholar
Kawanishi, N., Christenson, H. K. & Ninham, B. W. (1990). Measurement of the interaction between adsorbed polyelectrolytes: gelatin on mica surfaces. J. phys. Chem. 94, 46114617.CrossRefGoogle Scholar
Keller, D. & Bustamante, C. (1993). Attaching molecules to surfaces for scanning probe microscopy. Biophys. J. 64, 8961897.CrossRefGoogle ScholarPubMed
Keller, D. J. & Chi-Chung, C. (1992). Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surf. Sci. 268, 333339.CrossRefGoogle Scholar
Ketchem, P. R., Hu, W. & Cross, T. A. (1993). High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science, N.Y. 261, 14571461.CrossRefGoogle Scholar
Kleinschmidt, A. K. (1968). Monolayer techniques in electron microscopy of nucleic acid molecules. In Methods in Enzymology, vol. XII (ed. Grossman, L. and Moldave, K.), pp. 361377. New York and London: Academic Press.Google Scholar
Kornberg, R. D. & Darst, S. A. (1991). Two-dimensional crystals of proteins on lipid layers. Curr. Opin. Struct. Biol. 1, 642646.CrossRefGoogle Scholar
Kotyk, A., Janacek, K. & Koryta, J. (1988). Biophysical Chemistry of Membrane Functions. New York: John Wiley & Sons.Google Scholar
Kuhlbrandt, W. (1992). Two-dimensional crystallization of membrane proteins. Q. Rev. Biophys. 25, 149.CrossRefGoogle ScholarPubMed
Lal, R. & John, S. A. (1994). Biological applications of atomic force microscopy. Amer. J. Phys. 266, C1–C23.Google ScholarPubMed
Landau, L. D. & Lifshitz, E. M. (1986). Theory of Elasticity, 3rd ed., revised and enlarged by E. M. Lifshitz, A. M. Kosevich and L. P. Titaevskii. Oxford: Pergamon Press.Google Scholar
Lantz, M. A., O'Shea, S. J. & Welland, M. E. (1994). Force microscopy imaging in liquids using ac-techniques. Appl. Phys. Lett. 65, 409411.CrossRefGoogle Scholar
Leckband, D. E., Helm, C. A. & Israelachvili, J. (1993). Role of calcium in the adhesion and fusion of bilayers. Biochemistry 32, 11271140.CrossRefGoogle ScholarPubMed
Lee, C. H. & Charney, E. (1982). Solution conformation of DNA. J. molec. Biol. 161, 289303.CrossRefGoogle ScholarPubMed
Lee, G., Arscott, P. G., Bloomfield, V. A. & Evans, D. F. (1989). Scanning tunneling microscopy of nucleic acids. Science, N. Y. 244, 475477.CrossRefGoogle ScholarPubMed
Lin, J. N., Lea, A. S., Hansma, P. K. & Andrade, J. D. (1990). Direct observation of immunoglobulin adsorption dynamics using the atomic force microscope. Langmuir 6, 509511.CrossRefGoogle Scholar
Lindsay, S. M. & Tao, N. J. (1993). Potentiostatic deposition of molecules for SXM. In STM and SFM in Biology (ed. Marti, O. and Amrein, M.). San Diego: Academic Press.Google Scholar
Lindsay, S. M., Thundat, T., Nagahara, L., Knipping, U. & Rill, R. L. (1989). Images of the DNA Double Helix in Water. Science, N. Y. 244, 10631064.CrossRefGoogle ScholarPubMed
Lindsay, S. M. (1993). Biological applications of the scanning probe microscopy. In Scanning tunneling microscopy and spectroscopy: theory, techniques, and applications (ed. Bonnell, D. A.). New York: VCH Publishers.Google Scholar
Lindsay, S. M., Tao, N. J., Derose, J. A., Oden, P. I., Lyubchenko, Y. L., Harrington, R. E. & Shlyakhtenko, L. (1992). Potentiostatic deposition of DNA for scanning probe microscopy. Biophys. J. 61, 15701584.CrossRefGoogle ScholarPubMed
Locht, C. & Keith, J. (1986). Pertussis toxin gene: nucleotide sequence and genetic organization. Science, N.Y. 232, 12581264.CrossRefGoogle ScholarPubMed
Lubensky, T. C. & MacKintosh, F. C. (1993). Theory of ‘ripple’ phases in lipid bilayers. Phys. Rev. Lett. 71, 15651568.CrossRefGoogle ScholarPubMed
Luna, E. J. & McConnell, H. (1978). Multiple phase equilibria in binary mixtures of phospholipids. Biochim. biophys. Acta 509, 462473.CrossRefGoogle ScholarPubMed
Luna, E. J. & McConnell, H. M. (1977). The intermediate monoclinic phase of phosphatidylcholines. Biochim. biophys. Acta 466, 381392.CrossRefGoogle ScholarPubMed
Lyubchenko, Y. L., Jacobs, B. L. & Lindsay, S. M. (1992). Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucl. Acids Res. 20, 39833986.CrossRefGoogle ScholarPubMed
Lyubchenko, Y. L., Oden, P. I., Lampner, D., Lindsay, S. M. & Dunker, K. A. (1993). Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces. Nucl. Acids Res. 21, 11171123.CrossRefGoogle ScholarPubMed
Marion, J. C., Bezot, P., Hesse-Bezot, C., Roux, B. & Bernengo, J. C. (1981). Conformation of chromatin oligomers. Eur. J. Biochem. 120, 169176.CrossRefGoogle ScholarPubMed
Mason, J. T., Huang, C. & Biltonen, R. L. (1981). Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry, Philad. 20, 60866092.CrossRefGoogle ScholarPubMed
Mastrangelo, I. A., Bezanilla, M., Hansma, P. K., Hough, P. V. C. & Hansma, H. G. (1994). Structures of large T antigen at the origin of SV40 DNA replication by atomic force microscopy. Biophys. J. 66, 293298.CrossRefGoogle ScholarPubMed
McGonigal, G. C., Bernhardt, R. H. & Thomsom, D. J. (1990). Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope. Appl. Phys. Lett. 57, 2830.CrossRefGoogle Scholar
McIntosh, T. J., Simon, S. A., Ellington, J. C. & Porter, N. A. (1984). New structural model for mixed-chain phosphatidylcholine bilayers. Biochemistry, Philad. 23, 40384044.CrossRefGoogle ScholarPubMed
Melander, W. & Horvath, C. (1977). Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Archs Biochem. Biophys. 183, 200215.CrossRefGoogle ScholarPubMed
Merritt, E. A., Sarfaty, S., Van Der Akker, F., L'Hoir, C., Martial, J. A. & Hol, W. G. L. (1994). Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166175.CrossRefGoogle ScholarPubMed
Meyer, G. & Amer, N. M. (1988). Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 10451047.CrossRefGoogle Scholar
Moers, M. H. P., Tack, P. G., Van Hulst, N. F. & Bolger, B. (1994). A combined near field optical and force microscope. Scanning Microsc. 7, 577584.Google Scholar
hwald, H. (1990). Phospholipid and phospholipid-protein monolayers at the air/water interface. A. Rev. phys. Chem. 41, 441476.Google Scholar
Morozov, V. N. & Morozova, T. Ya. (1993). Elasticity of globular proteins. The relation between mechanics, thermodynamics and mobility. J. Biomol. Struct. Dynam. 11, 459481.CrossRefGoogle ScholarPubMed
Morse, S. I. & Morse, J. H. (1976). Isolation and properties of the leukocytosis- and lymphocytosis-promoting factors of Bordetella Pertussis. J. exp. Med. 143, 14831502.CrossRefGoogle ScholarPubMed
Moss, J. & Vaughan, M. (1988). ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv. Enzymol. 61, 303379.Google ScholarPubMed
Mou, J. & Shao, Z. (1995). Gramicidin A aggregation in model bilayers studied by atomic force microscopy. (To be submitted.)Google Scholar
Mou, J., Yang, J. & Shao, Z. (1993). An optical detection low temperature atomic force microscope at ambient pressure for biological research. Rev. Scient. Instrum. 64, 14831488.CrossRefGoogle Scholar
Mou, J., Yang, J. & Shao, Z. (1994 a). Tris(hydroxyrnethyl)aminomethane (C4H11NO3) induced ripple phase in supported unilamellar phospholipid bilayers. Biochemistry, Philad. 33, 44394443.CrossRefGoogle Scholar
Mou, J., Yang, J., Huang, C. & Shao, Z. (1994 b). Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry, Philad. 33, 99819985.CrossRefGoogle ScholarPubMed
Mou, J., Yang, J. & Shao, Z. (1995). Atomic force microscopy of cholera toxin Boligomer bound to bilayers of biologically relevant lipids. J. molec. Biol. (in the Press).Google Scholar
Nambi, P., Rowe, R. S. & McIntosh, T. J. (1988). Studies of the ethonal-induced interdigitated gel phase in phosphatidylcholines using the flurophore 1, 6-diphenyl-1, 3, 5-hexatriene. Biochemistry, Philad. 27, 91759182.CrossRefGoogle Scholar
Nejoh, H. (1990). Visible mechanism of liquid crystals on graphite scanning tunneling microscopy. Appl. Phys. Lett. 57, 29072909.CrossRefGoogle Scholar
Nicollian, E. H. & Brews, J. R. (1982). MOS (Metal Oxide Semiconductor) Physics and Technology, pp. 745753. New York: John Wiley & Sons.Google Scholar
O'Shea, S. J. & Welland, M. E. (1992). Solvation forces near a graphite surface measured with an atomic force microscope. Appl. Phys. Lett. 60, 23562358.Google Scholar
Ogden, R. W. (1986). Recent advances in the phenomenological theory of rubber elasticity. Rubb. Chem. Technol. 59, 361383.CrossRefGoogle Scholar
Ohnishi, S., Hara, M., Furuno, T. & Sasabe, H. (1992). Imaging the ordered array of water-soluble protein ferritin with the atomic force microscope. Biophys. J. 63, 14251431.CrossRefGoogle ScholarPubMed
Ohnishi, S., Hara, M., Furuno, T., Okada, T. & Sasabe, H. (1993). Direct visualization of polypeptide shell of ferritin molecule by atomic force microscopy. Biophys. J. 65, 573577.CrossRefGoogle ScholarPubMed
Pan, J., Jing, T. W. & Lindsay, S. M. (1994). Tunneling barriers in electrochemical scanning tunneling microscopy. J. phys. Chem. 98, 42054208.CrossRefGoogle Scholar
Panté, N. & Aebi, U. (1993). The nuclear pore complex. J. Cell Biol. 122, 977984.Google Scholar
Parsegian, V. A. (1973). Long-range physical forces in the biological milieu. A. Rev. Biophys. Bioengng 2, 221255.CrossRefGoogle ScholarPubMed
Parsegian, V. A. (1983). Dimensions of the ‘intermediate’ phase of dipalmitoylphosphatidylcholine. Biophys. J. 44, 413415.CrossRefGoogle ScholarPubMed
Paul, J. K., Nettikadan, S. R., Ganjeizadeh, M., Yamaguchi, M. & Takeyasu, K. (1994). Molecular imaging of Na+, K+-ATPase in purified kidney membranes. FEBS Lett. 346, 289294.Google ScholarPubMed
Pearce, K. H., Hiskey, R. G. & Thompson, N. L. (1992). Surface binding kinetics of prothrombin fragment 1 on planar membranes measured by total internal reflection fluorescence microscopy. Biochemistry, Philad. 31, 59835995.CrossRefGoogle ScholarPubMed
Pearson, R. H. & Pascher, I. (1979). The molecular structure of lecithin dihydrate. Nature, Lond. 281, 499501.CrossRefGoogle ScholarPubMed
Persson, B. N. J. (1987). The atomic force microscope: can it be used to study biological molecules? Chem. Phys. Lett. 141, 366368.CrossRefGoogle Scholar
Perutz, M. F. (1992). Protein function below 220 K. Nature, Lond. 358, 548.CrossRefGoogle ScholarPubMed
Prater, C. B., Wilson, M. R., Garnaes, J., Masie, J., Elings, V. B. & Hansma, P. K. (1991). Atomic force microscopy of biological samples at low temperature. J. Vac. Sci. Technol. B9, 989991.CrossRefGoogle Scholar
Putman, C. A. J., Van Der Wert, K. O., De Grooth, B. G., Van Hulst, N. F. & Greve, J. (1994 a). Tapping mode atomic force microscopy in liquid. Appl. Phys. Lett. 64, 24542456.CrossRefGoogle Scholar
Putman, C. A. J., Van Der Wert, K. O., De Grooth, B. G., Van Hulst, N. F. & Greve, J. (1994 b). Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. Biophys. J. 67, 17491753.CrossRefGoogle ScholarPubMed
Rachel, R., Jakubowski, U., Tietz, H., Hegerl, R. & Baumeister, W. (1986). Projected structure of the surface protein of Denococcus Radiodurans detected to 8 Å resolution by cryomicroscopy. Ultramicroscopy 20, 305316.CrossRefGoogle Scholar
Radmacher, M., Cleveland, J. P., Fritz, M., Hansma, H. G. & Hansma, P. K. (1994 a). Mapping interaction forces with the atomic force microscope. Biophys. J. 66, 21592165.CrossRefGoogle ScholarPubMed
Radmacher, M., Tillman, R. W. & Gaub, H. E. (1993). Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys. J. 64, 735742.CrossRefGoogle ScholarPubMed
Radmacher, M., Fritz, M., Hansma, H. G. & Hansma, P. K. (1994 b). Direct observation of enzyme activity with the atomic force microscope. Science, N. Y. 265, 15771579.CrossRefGoogle ScholarPubMed
Radmacher, M., Tillmann, R. W., Fritz, M. & Gaub, H. F. (1992). From molecules to cells: imaging soft samples with the atomic force microscope. Science, N.Y. 257, 19001905.CrossRefGoogle ScholarPubMed
Rand, R. P., Chapman, D. & Larsson, K. (1975). Tilted hydrocarbon chains of dipalmitoyl lecithin become perpendicular to the bilayer before melting. Biophys. J. 15, 11171124.CrossRefGoogle Scholar
Rasmussen, B. F., Stock, A. M., Ringe, D. & Petsko, G. A. (1992). Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature, Lond. 357, 423424.CrossRefGoogle ScholarPubMed
Rees, W. A., Keller, R. W., Vesenka, J. P., Yang, G. & Bustamante, C. (1993). Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. Science, N.Y. 260, 16461649.CrossRefGoogle ScholarPubMed
Ribi, H. O., Ludwig, D. S., Mercer, K. L., Schoolnik, G. K. & Kornberg, R. D. (1988). Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science, N.Y. 239, 12721276.CrossRefGoogle ScholarPubMed
Roberts, G. (1990). Langmuir-Blodgett Films. New York and London: Plenum Press.CrossRefGoogle Scholar
Rock, P., Allietta, M., Young, W. W. Jr., Thompson, T. E. & Tillack, T. W. (1991). Ganglioside GM1 and asialo-GM1 at low concentration are preferentially incorporated into the gel phase in two-component, two-phase phosphatidylcholine bilayers. Biochemistry, Philad. 30, 1925.CrossRefGoogle ScholarPubMed
Rock, P., Thompson, T. E. & Tillack, T. W. (1989). Persistence at low temperature of the Pβ ripple in dipalmitoylphosphatidylcholine multilamellar vesicles containing either glycosphingolipids or cholesterol. Biochim. biophys. Acta 979, 347351.CrossRefGoogle ScholarPubMed
Ross, W. & Landy, A. (1982). Anomalous electrophoretic mobility of restriction fragments containing the att region. J. molec. Biol. 156, 523529.CrossRefGoogle ScholarPubMed
Rowe, E. S. (1983). Lipid chain length and temperature dependence of ethanol-phosphatidylcholine interactions. Biochemistry, Philad. 22, 32993305.CrossRefGoogle Scholar
Rowe, E. S. (1985). Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholine. Biochim. biophys. Acta 813, 321330.CrossRefGoogle Scholar
Rowe, E. S. (1987). Induction of lateral phase separations in binary lipid mixtures by alcohol. Biochemistry, Philad. 26, 4651.CrossRefGoogle ScholarPubMed
Rugar, D. & Hansma, P. (1990). Atomic force microscopy. Physics Today 43, 2330.CrossRefGoogle Scholar
Sackmann, E. (1983). Physical foundations of the molecular organization and dynamics of membranes. In Biophysics (ed. Hoppe, W., Lohman, W., Markl, H. and Ziegler, H.), pp. 425430. Berlin: Springer-Verlag.Google Scholar
Saenger, W. (1984). Principles of Nucleic Acid Structure. New York: Springer-Verlag.CrossRefGoogle Scholar
Sankaram, M. B., Marsh, D. & Thompson, T. E. (1992). Determination of fluid and gel domain sizes in two-component, two-phase lipid bilayers. Biophys. J. 63, 340349.CrossRefGoogle ScholarPubMed
Sasabe, H., Furuno, T., Otomo, J., Tomioka, H., Urabe, Y., Nagamune, T., Kim, K.-H., Kobayashi, K. & Kobayashi, Y. (1992). Two-dimensional molecular packing of proteins. Thin Solid Films 216, 99104.CrossRefGoogle Scholar
Saukkonen, K., Burnette, W. N., Mar, V. L., Masure, H. R. & Tuomanen, E. I. (1992). Pertussis toxin has eucaryotic-like carbohydrate recognition domains. Proc. natn. Acad. Sci. U.S.A. 89, 118122.CrossRefGoogle Scholar
Schabert, F., Knapp, H., Karrasch, S., Haring, R. & Engel, A. (1994). Confocal scanning laser – scanning probe hybrid microscope for biological applications. Ultramicroscopy 53, 147157.CrossRefGoogle Scholar
Schabert, F. A. & Engel, A. (1994). Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys. J. 67, 23942403.CrossRefGoogle ScholarPubMed
Schindler, H. (1980). Formation of planar bilayers from artificial or native membrane vesicles. FEBS Lett. 122, 7779.CrossRefGoogle ScholarPubMed
Schürholz, Th. & Schindler, H. (1991). Lipid-protein surface films generated from membrane vesicles: selfassembly, composition, and film structure. Eur. Biophys. J. 20, 7178.Google Scholar
Scopes, R. K. (1994). Protein Purification: Principles and Practice, pp. 71101. New York: Springer-Verlag.CrossRefGoogle Scholar
Scott, H. L. & McCullough, W. S. (1993). Lipid-cholesterol interactions in the Pβ phase: application of a statistical mechanical model. Biophys. J. 64, 13981404.CrossRefGoogle Scholar
Shaiu, W.-L., Larson, D. D., Vesenka, J. & Henderson, E. (1993). Atomic force microscopy of oriented linear DNA molecules labeled with 5 nm gold spheres. Nucl. Acids Res. 21, 99103.CrossRefGoogle Scholar
Shao, Z. (1994). Atomic force microscopy of proteins. Bull. Am. Phys. Soc. 39, 912.Google Scholar
Shattuck, M. B., Gustafsson, M. G. L., Fisher, K. A., Yanagimoto, K. C., Veis, A., Bhatnagar, R. S. & Clarke, J. (1994). Monomeric collagen imaged by cryogenic force microscopy. J. Microsc. 174, RP1–RP2.CrossRefGoogle ScholarPubMed
Simon, S. A. & McIntosh, T. J. (1984). Interdigitated hydrocarbon chain packing causes the biphasic transition behavior in lipid/alcohol suspensions. Biochim. biophys. Acta 773, 169172.CrossRefGoogle ScholarPubMed
Singer, S. J. & Nicholson, G. L. (1972). The fluid mosaic model of the structure of membranes. Science, N.Y. 175, 720731.CrossRefGoogle Scholar
Slater, J. L. & Huang, C. (1988). Interdigitated bilayer membranes. Prog. Lipid Res. 27, 325359.CrossRefGoogle ScholarPubMed
Smith, D. P. E., Horber, J. K. H., Binnig, G. & Nejoh, H. (1990). Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunneling microscopy. Nature, Lond. 344, 641644.CrossRefGoogle Scholar
Smith, M. C., Furman, T. C. & Pidgeon, C. (1987). Immobilized iminodiacetic acid metal peptide complexes. Identification of chelating peptide purification handles for recombinant proteins. Inorg. Chem. 26, 19651969.CrossRefGoogle Scholar
Smith, M. C., Furman, T. C., Ingolia, T. D. & Pidgeon, C. (1988). Chelating peptide-immobilized metal ion affinity chromatography. J. biol. Chem. 263, 72117215.CrossRefGoogle ScholarPubMed
Spong, J. K., Mizes, H. A., LaComb, Jr. L. J., Dover, M. M., Fromer, J. E. & Foster, J. S. (1989). Contrast mechanism for resolving organic molecules with tunneling microscopy. Nature, Lond. 338, 137139.CrossRefGoogle Scholar
Stamatoff, J., Feuer, B., Guggenheim, H. J., Tellez, G. & Yamane, T. (1982). Amplitude of rippling in the Pβ phase of dipalmitoylphoaphatidylcholine bilayers. Biophys. J. 38, 217226.CrossRefGoogle ScholarPubMed
Stein, P. E., Boodhoo, A., Armstrong, G. D., Cockle, S. A., Klein, M. H. & Read, R. J. (1994). The crystal structure of pertussis toxin. Structure 2, 4557.CrossRefGoogle ScholarPubMed
Tamm, L. K. & Kalb, E. (1993). Microsectrofluorometry on supported planar membranes. In Molecular Luminescence Spectroscopy (ed. Schulmann, S. G.), pp. 253305. Wiley-Interscience, Inc.Google Scholar
Tamm, L. K. & McConnell, H. M. (1985). Supported phospholipid bilayers. Biophys. J. 47, 105113.CrossRefGoogle ScholarPubMed
Tamm, L. K. (1988). Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers. Biochemistry, Philad. 27, 14501457.CrossRefGoogle ScholarPubMed
Tamura, M., Nogimori, K., Murai, S., Yajima, M., Ito, K., Katada, T. & Ui, M. (1982). Subunit structure of Islet-active protein, pertussis toxin, in conformity with the A–B model. Biochemistry, Philad. 21, 55165522.CrossRefGoogle Scholar
Tao, N. J., DeRose, J. A. & Lindsay, S. M. (1993). Self-assembly of molecular superstructures studied by in situ STM: the DNA bases on Au(111). J. phys. Chem. 97, 910919.CrossRefGoogle Scholar
Tardieu, A., Luzzati, V. & Reman, F. C. (1973). Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J. molec. Biol. 75, 711733.CrossRefGoogle ScholarPubMed
Taylor, K. A. & Taylor, D. W. (1992). Formation of 2-d paracrystals of F-actin on phospholipid layers mixed with quarternary ammonium surfactants. J. struct. Biol. 108, 141147.CrossRefGoogle Scholar
Thompson, T. E. & Tillack, T. W. (1985). Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. A. Rev. Biophys. Biophys. Chem. 14, 361386.CrossRefGoogle ScholarPubMed
Thompson, T. E., Sankaram, M. B. & Biltonen, R. L. (1992). Biological membrane domains: functional significance. Comm. Mol. Cell Biophys. 8, 115.Google Scholar
Thundat, T., Warmack, R. J., Allison, D. P., Bottomley, L. A., Lourenco, A. J. & Ferrell, T. L. (1992). Atomic force microscopy of deoxyribonucleic acid strands adsorbed on mica: the effect of humidity on apparent width and image contrast. J. Vac. Sci. Technol. A10, 630635.CrossRefGoogle Scholar
Tillack, T. W., Wong, M., Allietta, M. & Thompson, T. E. (1982). Organization of the glycosphingolipid asialo-GM1 in phosphatidylcholine bilayers. Biochim. biophys. Acta 691, 261273.CrossRefGoogle ScholarPubMed
Treloar, L. R. G. (1975). The physics of rubber elasticity, 3rd ed. Oxford: Clarendon Press.Google Scholar
Trifonov, E. N. & Sussman, J. L. (1980). The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. natn. Acad. Sci. U.S.A. 77, 38163820.CrossRefGoogle ScholarPubMed
Trifonov, E. N. (1980). Sequence-dependent deformational anisotropy of chromatin DNA. Nucl. Acids Res. 8, 40414043.CrossRefGoogle ScholarPubMed
Urry, D. W. (1988). Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J. Protein Chem. 7, 134.CrossRefGoogle Scholar
Uzgiris, E. E. & Kornberg, R. D. (1983). Two-dimensional crystallization technique for imaging macromolecules, with application to antigen-antibody-complement complexes. Nature, Lond. 301, 125129.CrossRefGoogle ScholarPubMed
Van Hulst, N. F., Moers, M. H. P. & Bolger, B. (1993). Near-field optical microscopy in transmission and reflection modes in combination with force microscopy. J. Microsc. 171, 95105.CrossRefGoogle Scholar
Vaz, W. L., Melo, E. C. C. & Thompson, T. E. (1989). Translational diffusion and fluid domain connectivity in a two-component, two-phase phospholipid bilayer. Biophys. J. 56, 869876.CrossRefGoogle Scholar
Verger, R. & Pattus, F. (1976). Spreading of membranes at the air/water interface. Chem. Phys. Lipids 16, 285291.CrossRefGoogle ScholarPubMed
Vesenka, J., Guthold, M., Tang, C. L., Keller, D., Delaine, E. & Bustamante, C. (1992). Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 4244, 12431249.CrossRefGoogle ScholarPubMed
Wack, D. C. & Webb, W. W. (1988). Measurements of modulated lammelar Pβ phases of interacting lipid membranes. Phys. Rev. Lett. 61, 12101213.CrossRefGoogle Scholar
Wallach, D. F. H. (1987). Fundamentals of Receptor Molecular Biology, pp. 159181. New York and Basel: Marcel Dekker, Inc.Google Scholar
Walters, D. A., Hampton, D., Drake, B., Hansma, H. G. & Hansma, P. K. (1994). Atomic force microscope integrated with a scanning electron microscope for tip fabrication. Appl. Phys. Lett. 65, 787789.CrossRefGoogle Scholar
Wang, Y.-Y., Ho, R., Shao, Z. & Somlyo, A. P. (1992). Optimization of quantitative electron energy loss spectroscopy in the low loss region: phosphorus L-edge. Ultramicroscopy 41, 1131.CrossRefGoogle ScholarPubMed
Wardlaw, A. C. & Parton, R. (1988). Pathogenesis and Immunity in Pertussis. Chichester, New York, Brisbane, Toronto and Singapore: John Wiley & Sons Ltd.Google Scholar
Weisenhorn, A. L., Drake, B., Prater, C. B., Gould, S. A. C., Hansma, P. K., Ohnesorge, F., Egger, M., Heyn, S.-P. & Gaub, H. E. (1990). Immobilized proteins in buffer imaged at molecular resolution by atomic force microscopy. Biophys. J. 58, 12511258.CrossRefGoogle ScholarPubMed
Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R. & Quate, C. T. (1989). Forces in atomic force microscopy in air and water. Appl. Phys. Lett. 54, 26512653.CrossRefGoogle Scholar
Weisenhorn, A. L., Maivald, P., Butt, H.-H. & Hansma, P. K. (1992). Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic force microscope. Phys. Rev. B 45, 1122611232.CrossRefGoogle ScholarPubMed
Wiegrabe, W., Nonnenmacher, M., Guckenberger, R. & Wolter, O. (1991). Atomic force microscopy of a hydrated bacterial surface protein. J. Microsc. 163, 7984.CrossRefGoogle ScholarPubMed
Wildhaber, I., Gross, H., Engel, A. & Baumeister, W. (1985). The effect of air-drying and freeze-drying on the structure of a regular protein layer. Ultramicroscopy 16, 411422.CrossRefGoogle Scholar
Wolf, D. E. (1992). Lipid domains: the parable of the blind men and the elephant. Comm. Mol. Cell Biophys. 8, 8396.Google Scholar
Wu, H.-M. & Crothers, D. M. (1984). The locus of sequence-directed and protein-induced DNA binding. Nature, Lond. 308, 509513.CrossRefGoogle Scholar
Ximen, H. & Russell, P. E. (1992). Microfabrication of AFM tips using focused ion and electron beam techniques. Ultramicroscopy 4244, 15261532.CrossRefGoogle Scholar
Yang, J. & Shao, Z. (1993). The effect of probe force on the resolution of atomic force microscopy of DNA. Ultramicroscopy 50, 157170.CrossRefGoogle ScholarPubMed
Yang, J. & Shao, Z. (1995). Recent advances in biological atomic force microscopy. Micron 26, 3549.CrossRefGoogle ScholarPubMed
Yang, J., Mou, J. & Shao, Z. (1994 a). Molecular resolution atomic force microscopy of soluble proteins in solution. Biochim. biophys. Acta 1199, 105114.CrossRefGoogle ScholarPubMed
Yang, J., Mou, J. & Shao, Z. (1994 b). Structure and stability of pertussis toxin studied by in situ atomic force microscopy. FEBS Lett. 338, 8992.CrossRefGoogle ScholarPubMed
Yang, J., Takeyasu, K. & Shao, Z. (1992 a). Atomic force microscopy of DNA molecules. FEBS Lett. 301, 173176.CrossRefGoogle ScholarPubMed
Yang, J., Takeyasu, K., Somlyo, A. P. & Shao, Z. (1992 b). Scanning tunneling microscopy of an ionic crystal: ferritin core. Ultramicroscopy 45, 199203.CrossRefGoogle ScholarPubMed
Yang, J., Takeyasu, K., Somlyo, A. P. & Shao, Z. (1991). Molecular resolution imaging of polyglucose by scanning tunneling microscopy. FEBS Lett. 279, 295299.CrossRefGoogle ScholarPubMed
Yang, J., Tamm, L. K., Somlyo, A. P. & Shao, Z. (1993 a). Promises and problems of biological atomic force microscopy. J. Microsc. 171, 183198.CrossRefGoogle ScholarPubMed
Yang, J., Tamm, L. K., Tillack, T. W. & Shao, Z. (1993 b). New approach for atomic force microscopy of membrane proteins: the imaging of cholera toxin. J. molec. Biol. 229, 286290.CrossRefGoogle ScholarPubMed
Yeagle, P. (1993). The Membranes of Cells, 2nd ed. Orlando: Academic Press.Google Scholar
Yuan, J. Y., Shao, Z. & Cao, G. (1991). Alternative method of imaging topologies of non-conducting bulk specimens by scanning tunneling microscopy. Phys. Rev. Lett. 67, 863866.CrossRefGoogle Scholar
Zasadzinski, J. A. N., Helm, C. A., Longo, M. L., Weisenhorn, A. L., Gould, S. A. C. & Hansma, P. K. (1991). Atomic force microscopy of hydrated phosphatidylethanolamine. Biophys. J. 59, 755760.CrossRefGoogle ScholarPubMed
Zenhausern, F., Adriah, M., Heggeler-Bordier, B. T., Emch, R., Jobin, M., Taborelli, M. & Descouts, P. (1992). Imaging of DNA by scanning force microscopy. J. struct. Biol. 108, 6973.CrossRefGoogle ScholarPubMed
Zhong, Q., Inniss, D., Kjoller, K. & Elings, V. B. (1993). Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. Lett. 290, L688–L692.Google Scholar