Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T06:46:11.988Z Has data issue: false hasContentIssue false

Piezoelectric properties of biological polymers

Published online by Cambridge University Press:  17 March 2009

Eiichi Fukada
Affiliation:
The Institute of Physical and Chemical Research, Wako-shi, Saitama 351, Japan

Extract

Piezoelectricity and pyroelectricity in wool and hair were observed by Martin early in 1941. The piezoelectric effect in wood was investigated in detail by Bazhenov (1961). Both converse and direct effect of shear piezoelectricity in wood was demonstrated by Fukada (1955). Bending piezoelectricity in bone was first discovered by Yasuda (1953). Shear and longitudinal piezoelectricity in bone and tendon was quantitatively investigatged by Fukada & Yasuda (1957, 1964).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ando, Y., Okano, R., Kitamura, A., Nishida, K., Miyata, S., Kainoki, H. & Fukada, E. (1978). Piezoelectricity of oriented silk fibroin films. Extended Abstract Int. Workshop on Electric Charges in Dielectrics, Oct. 1978, Kyoto Japan.Google Scholar
Athenstaedt, H. (1972). Pyroelectric behaviour of integument structures and of thermo-, photo- and mechanoreceptors. Z. Anat. Entw.Gesch. 136, 249271.CrossRefGoogle ScholarPubMed
Athenstaedt, H. (1976). Pyroelectric properties of wheat. Ferroelectrics 14, 753759.CrossRefGoogle Scholar
Barrett, T. W. (1975). Hyaluronic acid salt-a mechanoelectrical transducer. Biochim. biophys. Acta 385, 157161.CrossRefGoogle ScholarPubMed
Bassett, C. A. L. (1971). Biophysical principles affecting bone structure. In The Biochemistry and Physiology of Bone, vol. III (ed. Bourne, G. H.), ch. 1, pp. 176. New York: Academic Press.Google Scholar
Bazhenov, V. A. (1961). Piezoelectric Properties of Wood. New York: Consultants Bureau.Google Scholar
Bovee, E. C. & Jahn, T. L. (1972). A theory of piezoelectric activity and ion-movements in the relation of flagellar structures and their movements to the phototaxis of Euglena. J. theor. Biol. 35, 259276.CrossRefGoogle Scholar
Caserta, G. & Cervigni, T. (1973). A piezoelectric transducer model for phosphorylation in photosynthetic membranes. J. theor. Biol. 41, 127142.CrossRefGoogle ScholarPubMed
Caserta, G. & Cervigni, T. (1974). Piezoelectric theory of enzymic catalysis as inferred from the electromechanochemical principles of bioenergetics. Proc. natn. Acad. Set. U.S.A. 71, 44214424.Google Scholar
Cope, F. W. (1973). Piezoelectricity and pyroelectricity as a basis for force and temperature detection by nerve receptors. Bull. math. Biology 35, 3141.Google Scholar
Date, M. (1976). The piezoelectric constant for disperse systems. Polymer J. 8, 6066.Google Scholar
Dealler, S. F. (1981). Electrical phenomena associated with bones and fractures and the therapeutic use of electricity in fracture healing. J. Med. Eng. Techn. 5, 7379.CrossRefGoogle ScholarPubMed
Eriksson, C. (1974). Electrical Properties of Bone, In The Biochemistry and Physiology of Bone, vol. IV (ed. Bourne, G. H.), ch. 8, pp. 329384. New York: Academic Press.Google Scholar
Friedenberg, Z. B., Dyer, R. & Brighton, C. T. (1971). Electroosteograms of long bones of immature rabbits. J. dent. Res. 50, 635639.CrossRefGoogle ScholarPubMed
Fukada, E. (1955). Piezoelectricity of wood. J. phys. Soc. Japan 10, 149154.CrossRefGoogle Scholar
Fukada, E. (1956). On the piezoelectric effects of silk fibers. J. phys. Soc. Japan 12, 1301.CrossRefGoogle Scholar
Fukada, E. & Yasuda, I. (1957). On the piezoelectric effect of bone. J. Phys. Soc. Japan 12, 11581162.CrossRefGoogle Scholar
Fukada, E. & Yasuda, I. (1964). Piezoelectric effects in collagen. J. Appl. Phys. 3, 117121.Google Scholar
Fukada, E., Date, M. & Hirai, N. (1966). Piezoelectric effect in poly- γ-methyl-L-glutamate. Nature 211, 1079.Google Scholar
Fukada, E., Date, M. & Hirai, N. (1968). Effect of temperature on piezoelectricity in wood. J. Polymer Sci. C 23, 509517.Google Scholar
Fukada, E., Date, M. & Emura, T. (1968). Temperature variation of complex piezoelectric modulus in cellulose acetate. J. Soc. Mat. Sci. Japan 17, 335338.Google Scholar
Fukada, E. (1968). Mechanical deformation and electrical polarization in biological substances. Biorheology 5, 199208.Google Scholar
Fukada, E. & Takashita, S. (1971). Piezoelectric constant in oriented β-form polypeptides. Japan. J. Appl. Phys. 10, 722726.CrossRefGoogle Scholar
Fukada, E. & Date, M. (1973). Piezoelectric relaxations in polymers: Spherical dispersion model. J. Macromol. Sci. B 8, 463474.CrossRefGoogle Scholar
Fukada, E., Furukawa, T., Baer, E., Hiltner, A. & Anderson, J. M. (1973). Piezoelectric relaxations in homopolymers and copolymers of γ-benzyl-L-glutamate and L-leucine. J. Macromol. Sci. B 8, 475481.Google Scholar
Fukada, E. (1974 a). Piezoelectric properties of organic polymers. A. New York Acad. Sci. 238, 725.Google Scholar
Fukada, E. (1974 b). Piezoelectric properties of biological macromolecules. Adv. Biophys. 6, 121155.Google Scholar
Fukada, E. (1981). Piezoelectricity of Bone and Osteogenesis by piezoelectric films. In Mechanisms of Growth Control (ed. Becker, R. O.), pp. 192210. Illinois: Charles C. Thomas.Google Scholar
Fukada, E. & Furukawa, T. (1981). Piezoelectricity and ferroelectricity in polyvinylidene fluoride. Ultrasonics 19, 3139.CrossRefGoogle Scholar
Fukada, E., Date, M., Furukawa, T., Tajitsu, Y., Chiba, A., Hiltner, A. & Anderson, J. M. (1982). Effect of hydration on piezoelectric, elastic, and dielectric constants of crosslinked poly-(hydroxyethyl glutamine). J. Macromol. Sci. B 21, 145156.CrossRefGoogle Scholar
Fukada, E. & Ueda, H. (1982). Shear piezoelectricity in ethylene dichloride solution of poly-γ-methyl-L-glutamate. Appl. Phys. Lett. 41, 10041006.Google Scholar
Furukawa, T. & Fukada, E. (1976). Piezoelectric relaxation in poly(γ- benzyl-glutamate). J. Polym. Sci. Phys. 14, 19792110.Google Scholar
Furukawa, T., Ishida, K. & Fukada, E. (1979). Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. appl. Phys. 50, 49044912.CrossRefGoogle Scholar
Go, Y., Ejiri, S. & Fukada, E. (1969). Magnetic orientation of poly- γ-benzyl-L-glutamate. Biochim. biophys. Acta 175, 454456.Google Scholar
Hirai, N., Asano, H. & Sobue, N. (1973). Piezoelectric anisotropy of wood. J. Soc. Mat. Sci. Japan 22, 948955.Google Scholar
Hirai, N. (1974). Studies on piezoelectric effect of wood. Bull. Shizuoka Univ. Forest, no. 3, 1177.Google Scholar
Indue, S., Ohashi, T., Fukada, E. & Ashihara, T. (1979). Electric stimulation of osteogenesis in the rat: Amperage of three different stimulation methods. In Electrical Properties of Bone and Cartilage (ed. Brighton, C. T., Black, J. and Pollack, S. R.), pp. 199213. New York: Grune and Stratton.Google Scholar
Kornguth, S. E. (1974). The synapse: A perspective from in situ and in vitro studies. Rev. Neurosci. I, 63114.Google Scholar
Lang, S. B. (1966). Pyroelectric effect in bone and tendon. Nature 212, 704.Google Scholar
Lang, S. B. & Athenstaedt, H. (1978). Anomalous pyroelectric behavior in the leaves of the palm-like plant Encephalartos Villosus. Ferro-electrics 17, 511519.CrossRefGoogle Scholar
Lipinski, B. (1977). Biological significance of piezoelectricity in relation to acupuncture, Hatha Yoga, osteopathic medicine and action of air ions. Med. Hypotheses 3, 912.Google Scholar
Martin, A. J. P. (1941). Tribo-electricity in wool and hair. Proc. phys. Soc. 53, 186189.Google Scholar
Meyer, R. B. (1969). Piezoelectric effects in liquid crystals. Phys. Rev. Lett. 22, 918921.Google Scholar
Namiki, K., Hayakawa, R. & Wada, Y. (1980). Molecular theory of piezoelectricity of a-helical polypeptide. J. Polym. Sci. B 18, 9931004.Google Scholar
Nishinari, K. & Koide, S. (1978). On the difference between dielectric and piezoelectric relaxation. J. Phys. 39, 771775.Google Scholar
Nishinari, K. & Fukada, E. (1980). Viscoelastic, dielectric, and piezoelectric behavior of solid amylose. J. Polym. Sci. B 18, 16091619.Google Scholar
Nye, J. F. (1960). Physical Properties of Crystals. London: Oxford University Press.Google Scholar
Sasaki, S. & Fukada, E. (1975). Sign inversion in piezoelectric temperature variation in cellulose triacetate. Rept. Prog. Polym. Phys. Japan 18, 361364.Google Scholar
Sasaki, S. & Fukada, E. (1976). Deformation of the crystal lattice by water absorption and piezoelectricity of cellulose triacetate. J. Polym. Sci. B 14, 565567.Google Scholar
Shubnikov, A. V. (1946). Piezoelectric Textures. Izd-vo AN SSSR (in Russian).Google Scholar
Sisken, B. F., Smith, S. D. & Lafferty, J. F. (1979). A comparison of the effects of direct current, nerve growth factor, and direct current plus nerve growth factor on amputated rat limbs. In Electrical Properties of Bone and Cartilage (ed. Brighton, C. T., Black, J. and Pollack, S. R.), pp. 267287. New York: Grune and Stratton.Google Scholar
Spadaro, J. A. (1982). Bioelectric stimulation on bone formation: methods, models, and mechanisms. J. Bioelect. I, 99128.Google Scholar
Takashita, S., Furukawa, T. & Fukada, E. (1975). Dependence of piezoelectric temperature dispersion of poly-γ-methyl-D-glutamate on secondary structure. Rept. Prog. Polymer Phys. Japan 18, 543546.Google Scholar
Wada, Y. & Hayakawa, R. (1976). Piezoelectricity and pyroelectricity of polymers. Japan. J. appl. Phys. 15, 20412057.Google Scholar
Wolff, J. (1892). Das Gesetz der Transformation der Knochen. Berlin: A. Hirschwald.Google Scholar
Yasuda, I. (1953). Fundamental aspects of fracture treatment. J. Kyoto Med. Soc. 4, 395406 (in Japanese); Clin. Orthop. Rel. Res. 124, 58, (1977) (in English translation).Google Scholar
Zimmerman, R. L., Suchicital, C. & Fukada, E. (1975). Electric field-induced piezoelectricity in polymer film. J. Appl. Polymer Set. 19, 13731379.CrossRefGoogle Scholar
Zimmerman, R. L. (1976). Induced piezoelectricity in isotropic biomaterial. Biophys. J. 16, 13411348.CrossRefGoogle ScholarPubMed