Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T05:04:35.949Z Has data issue: false hasContentIssue false

Orientation and mobility of molecules in membranes studied by polarized light spectroscopy

Published online by Cambridge University Press:  17 March 2009

Lennart B.-Å. Johansson
Affiliation:
Physical Chemistry 2, Chemical Centre, University of Lund, P.O. Box 740S-220 07 Lund 7, Sweden
Göran Lindblom
Affiliation:
Physical Chemistry 2, Chemical Centre, University of Lund, P.O. Box 740S-220 07 Lund 7, Sweden

Extract

Biological membranes are composed of mainly lipids and proteins. The physical properties of the lipids, forming a bilayer structure, are of crucial importance for the living cell, since the plasma membrane is the guardian barrier towards the environment. Thus, the functioning cell needs a highly stable lipid bilayer, which depends on molecular packing and orientation properties of the various membrane components (Wieslander et al. 1980). The spatial arrangement of the membrane proteins incorporated in the lipid matrix plays an essential role for the different chemical processes occurring at or within the membrane. Information about molecular orientation and mobility is therefore necessary for unravelling the functional mechanisms of a biological membrane.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, A. C. (1961). Polarizations and assignments of transitions: The method of photoselection. J. molec. Spectrosc. 6, 84.CrossRefGoogle Scholar
Austin, R. H., Chan, S. S. & Jovin, T. M. (1979). Rotational diffusion of cell surface components by time-resolved phosphorescence anisotropy. Proc. natn. Acad. Sci. U.S.A. 76, 5650.CrossRefGoogle ScholarPubMed
Badley, R. A., Martin, W. G. & Schneider, H. (1973). Dynamic behaviour of fluorescent probes in lipid bilayer model membranes. Biochemistry, N.Y. 12, 268.CrossRefGoogle ScholarPubMed
Badley, R. A. (1976). Fluorescent probing of dynamic and molecular organization of biological membranes. In Modern Fluorescence Spectroscopy, vol. 2 (ed. Wehry, E. L.), p. 91. London: Heyden.CrossRefGoogle Scholar
Badoz, J., Billardon, M., Canit, J. C. & Russel, M. F. (1977). Sensitive devices to determine the state and degree of polarization of light beam using a birefringence modulator. J. Opt. Paris 8, 373.CrossRefGoogle Scholar
Becker, J. F., Geacintov, N. E., Van Nostrand, F. & Van Metter, R. (1973). Orientation of chlorophyll in vivo. Studies with magnetic field oriented Chlorella. Biochem. biophys. Res. Commun. 51, 597.CrossRefGoogle ScholarPubMed
Blasie, J. K., Erecińska, S. S. & Leigh, J. S. (1978). The structure of a cytochrome oxidase–lipid model membrane. Biochim. biophys. Acta 501, 33.CrossRefGoogle ScholarPubMed
Breton, J., Michel-Villaz, M. & Paillotin, G. (1973). Orientation of pigments and structural proteins in the photosynthetic membrane of spinach chloroplasts: A linear dichroism study. Biochim. biophys. Acta 314, 42.CrossRefGoogle ScholarPubMed
Breton, J. (1977). Dichroism of transient absorbance changes in the red spectral region using oriented chloroplasts. II. P-700 absorbance changes. Biochim. biophys. Acta 459, 66.CrossRefGoogle ScholarPubMed
Brink, D. M. & Satchler, G. R. (1968). Angular Momentum. Oxford University Press.Google Scholar
Brown, G. H., Doane, J. W. & Neff, V. D. (1971). A review of the structure and physical properties of liquid crystals. C.R.C. Rev. Solid State Phys. 1, 303.Google Scholar
Buckmaster, H. A. (1964). Tables of angular momentum transformation matrix elements (j = 2·4, 6). Can. J. Phys. 42, 386.CrossRefGoogle Scholar
Bücher, H., Drexhage, K. H., Fleck, M., Kuhn, H., Möbius, D., Schäfer, F. P., Sondermann, J., Sperling, W., Tillmann, P. & Wiegand, J. (1967). Controlled transfer of excitation energy through thin layers. Mol. Cryst. Liquid Cryst. 2, 199.CrossRefGoogle Scholar
Bücher, H., Drexhage, D. K., Fleck, M., Kuhn, H., Möbius, D., Schäfer, F. P., Sondermann, J., Sperling, W., Tillmann, P. & Wiegand, J. (1967). Controlled transfer of excitation energy through thin layers. Mol. Cryst. Liquid Cryst. 2, 199.CrossRefGoogle Scholar
Cehelnik, E. D., Cundall, W. R. B., Luckwood, J. R. & Palmer, T. F. (1975). Solvent and temperature effects on the fluorescence of all-trans-1,6-diphenyl-1,3,5 hexatriene. J. Phys. Chem. 79, 1369.CrossRefGoogle Scholar
Cehelnik, E. D., Mielenz, K. D. & Cundall, R. B. (1976). A study of the polarization of fluorescence of ordered systems with application to ordered liquid crystals. J. Res. natn. Bur. Stand. A. 80 A, 15.CrossRefGoogle Scholar
Chapman, D., Williams, R. M. & Ladbrooke, B. D. (1967). Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2-diacyl-phosphatidylcholines (lecithins). Chem. Phys. Lzpids 1, 445.Google Scholar
Chapoy, L. L. & DuPré, D. B. (1978). Polarized fluorescent emission in uniaxial liquid crystals. The effect of intramolecular energy transfer and rotqtional Brownian motion on measurements of orientational distribution function. J. chem. Phys. 69, 519.CrossRefGoogle Scholar
Chapoy, L. L. & DuPré, D. B. (1979). Polarized fluorescence measurements of orientational order in a uniaxial liquid crystal. J. chem. Phys. 70, 2550.CrossRefGoogle Scholar
Cheng, J. C. (1977). Polarization scrambling using a photoelastic modulator: Application to linear dichroism measurement. Rev. scient. Instrum. 48, 1086.CrossRefGoogle Scholar
Cherry, R. J. (1978). Measurement of protein rotational diffusion in membranes by flash photolysis. Meth. Enzym. 54, 47.CrossRefGoogle ScholarPubMed
Cogan, U., Shinitzky, M., Weber, G. & Nishida, T. (1973). Microviscosity and order in the hydrocarbon region of phospholipid and phospholipid–cholesterol dispersions determined with fluorescent probes. Biochemistry N.Y. 12, 521.CrossRefGoogle ScholarPubMed
Davidsson, Å. & Nordén, B. (1976 a). Aspects on the conversion of Legrand–Grosjean circular dichroism spectrometers to linear dichroism detection. Chem. Scr. 9, 49.Google Scholar
Davidsson, Å. & Nordén, B. (1976 b). On the problem of obtaining accurate circular dichroism. Calibration of circular dichroism spectrometers. Spectrochim. Acta 32 A, 717.CrossRefGoogle Scholar
De Vries, J. J. & Berendsen, H. J. C. (1969). Nuclear magnetic resonance measurements on a macroscopically ordered smectic liquid crystalline phase. Nature, Lond. 221, 1139.CrossRefGoogle Scholar
Dolganov, V. K. & Bolotin, B. M. (1978). Determination of the molecular arrangement in liquid crystals by polarization of fluorescence. Mol. Cryst. Liquid Cryst. 47, 179.CrossRefGoogle Scholar
Dörr, F. (1966). Zur Spectroscopie mit polarisiertem Licht. Angew. Chem. 78, 457.CrossRefGoogle Scholar
Eaton, W. A. & Hochstrasser, R. M. (1967). Electronic spectrum of single crystals of ferricytochrome-c. J. chem. Phys. 46, 2533.CrossRefGoogle ScholarPubMed
Eaton, W. A., Hofrichter, J., Makinen, M. W., Andersen, R. D. & Ludwig, M. L. (1975). Optical spectra and electronic structure of flavine mononucleotide in flavodoxim crystals. Biochemistry N.Y. 14, 2146.CrossRefGoogle ScholarPubMed
Erecińska, M., Blasie, J. K. & Wilson, D. F. (1977). Orientation of the haems of cytochrome c oxidase and cytochrome c in mitochondria, FEBS Lett. 76 235.CrossRefGoogle Scholar
Erecińska, M., Wilson, D. F. & Blasie, J. K. (1978). Studies on the orientation of the mitochondrial redox carriers. I. Orientation of the haems of cytochrome c oxidase with respect to the plane of a cytochrome oxidase–lipid model membrane. Biochim. biophys. Acta 501, 53.CrossRefGoogle Scholar
Fischer, N., Goldammer, E. V. & Peltzl, J. (1979). Polarization spectra of free base tetraphenylporphyrin and its Zn-, Cu-metallo complexes. J. Mol. Struct. 56, 95.CrossRefGoogle Scholar
Fromherz, P. (1970). Energy transfer to cytochrome c in an artificial lamellar system. FEBS Lett. 11, 205.CrossRefGoogle Scholar
Gagliano, A. G., Geacintov, N. E. & Breton, J. (1977). Orientation and linear dichroism of chioroplasts and sub-chloroplast fragment oriented in an electric field. Biochim. biophys. Acta 461, 460.CrossRefGoogle ScholarPubMed
Gale, R., Peacock, R. D. & Samori, R. (1976). The linear dichroism spectra of free base and manganese (III) porphyrins. Chem. phys. Lett. 37, 430.CrossRefGoogle Scholar
Geacintov, N. E., Van Nostrand, F. & Becker, J. F. (1971). Magnetic dichroism and polarization of fluorescence of chlorophyll in Chiorella. Proc. 2nd Int. Congr. Photosyn. Res., Stresa, p. 283.Google Scholar
Geacintov, N. E., Van Nostrand, F., Becker, J. F. & Tinkel, J. B. (1972). Magnetic field induced orientation of photosynthetic systems. Biochim. biophys. Acta 267, 65.CrossRefGoogle ScholarPubMed
Goedheer, J. C. (1955). Chlorophyll spectra and molecular structure. Nature, Lond. 176, 928.CrossRefGoogle ScholarPubMed
Gouterman, M. (1961). Spectra of porphyrins. J. molec. Spectrosc. 6, 138.CrossRefGoogle Scholar
Greinert, R., Staerk, H., Stier, A. & Weller, A. (1979). E-type delayed fluorescence depolarization, a technique to probe rotational motion in the micro-second range. J. Biochem. Biophys. Meth. 1, 77.CrossRefGoogle Scholar
Heyn, M. P. (1979). Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 108, 359.CrossRefGoogle ScholarPubMed
Hildenbrand, K. & Nicolau, G. (1979). Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes. Biochim. biophys. Acta 553, 365.CrossRefGoogle Scholar
Hipps, K. W. & Crosby, G. A. (1979). Applications of the photoelastic modulator to polarization spectroscopy. J. Phys. Chem. 83, 555.CrossRefGoogle Scholar
Hoff, A. J. (1974). The orientation of chlorophyll and bacteriochlorophyll molecules in an oriented lecithin multiplayer. Photochem. & Photobiol. 19, 51.CrossRefGoogle Scholar
Hofrichter, J. & Eaton, W. A. (1976). Linear dichroism of biological chromophores. A. Rev. Biophys. Bioeng. 5, 511.CrossRefGoogle ScholarPubMed
Hong, F. T., Mauzerall, D. & Mauro, A. (1971). Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field. Proc. natn. Acad. Sci. USA. 68, 1283.CrossRefGoogle Scholar
Hubbard, P. S. (1969). Some properties of correlation functions of irreducible tensor operators. Phys. Rev. 180, 319.CrossRefGoogle Scholar
Jähnig, F. (1979 a). Molecular theory of lipid membrane order. J. chem. Phys. 70, 3279.CrossRefGoogle Scholar
Jähnig, F. (1979 b). Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data. Proc. natn. Acad. Sci. U.S.A. 76, 6361.CrossRefGoogle ScholarPubMed
Johansson, L. B.-Å., Davidsson, Å., Lindblom, G. & Nordén, B. (1978). Linear dichroism as a tool for studying molecular orientation in membrane systems. 2. Order parameters of guest molecules from linear dichroism and nuclear magnetic resonance. J. phys. Chem. 82, 2604.CrossRefGoogle Scholar
Johansson, L. B.-Å., Davidsson, Å., Lindblom, G. & Naqvi, K. R. (1979). Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy. Biochemistry N. Y. 18, 4249.CrossRefGoogle ScholarPubMed
Johansson, L. B.-Å. & Lindblom, G. (1980 a). A theoretical and experimental treatment of fluorescence detected linear dichroism. (To be published.)Google Scholar
Johansson, L. B.-Å., Söderman, O., Fontell, K. & Lindblom, G. (1980 b). The orientation of retinal in two lamellar liquid crystals. Changes in the lipid packing in the bilayer (Submitted.)Google Scholar
Johansson, L. B.-Å. & Lindblom, G. (1980 c). The orientation and binding of tetracine in a model membrane studied by polarized absorption spectroscopy. (Submitted.)Google Scholar
Journeaux, R. & Viovy, R. (1978). Orientation of chlorophylls in liquid crystals. Photochem. & Photobiol. 28, 243.CrossRefGoogle Scholar
Junge, W. & DeVault, D. (1975). Symmetry, orientation and rotational mobility in the a3 haem of cytochrome c oxidase in the inner membrane of mitochondria. Biochim. biophys. Acta 408, 200.CrossRefGoogle ScholarPubMed
Kawato, S., Kinosita, K. Jr. & Ikegami, A. (1977). Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry N.Y. 16, 2319.CrossRefGoogle ScholarPubMed
Kawato, S., Kinosita, K. Jr. & Ikegami, A. (1978). Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques. Biochemistry N. Y. 17, 5026.CrossRefGoogle ScholarPubMed
Khan, A., Wieslander, Å., Rilfors, L. & Lindblom, G. (1980). Molecular shape and the phase structure of membrane lipids from Acholeplasina laidlawii. The effect of cholesterol. (Submitted.)Google Scholar
Kinosita, K. Jr., Kawato, S. & Ikegami, A. (1977). A theory of fluorescence polarization decay in membranes. Biophys. J. 20, 289.CrossRefGoogle Scholar
Lakowicz, J. R., Prendergast, F. G. & Hogen, D. (1979). Differential polarized phase fluorometric investigations of diphenyl-hexatriene in lipid bilayers. Quantitation of hindered depolarizing rotation. Biochemistry N.Y. 18, 508.CrossRefGoogle Scholar
Lawson, K. D. & Flautt, J. T. (1968). Mesomorphic phases. II. Proton and deuterium magnetic resonance studies on the dimethyl dodecylamineoxide deuterium oxide system. J. phys. Chem. 72, 2066.CrossRefGoogle Scholar
Lessing, H. E. & Von Jena, A. (1976). Separation of rotational diffusion and level kinetics in transient absorption spectroscopy. Chem. phys. Lett. 42, 213.CrossRefGoogle Scholar
Lindblom, G. (1972). Ion binding in liquid crystals studied by NMR. IV 23Na NMR of macroscopically aligned lamellar mesophases. Acta chem. scand. 26, 1745.CrossRefGoogle Scholar
Lindblom, G., Wennerström, H. & Lindman, B. (1976 a). The NMR quadrupole splitting Method for Studying Ion Binding in Liquid Crystals (ed. Resing, H. A. and Wade, C. G.). ACS Symposium Series, no. 34.CrossRefGoogle Scholar
Lindblom, G., Persson, N.-O. & Arvidson, G. (1976 b). Ion binding and water orientation in lipid model membrane systems studied by NMR (ed. Friberg, S.). Adv. Chein. Ser. no. 152.CrossRefGoogle Scholar
Lindblom, G., Wennerström, H., Arvidson, G. & Lindman, B. (1976 c). Lecithin translational diffusion studied by pulsed NMR. Biophys. J. 16, 1287.CrossRefGoogle Scholar
Lindblom, G. & Wennerström, H. (1976 d). Lipid diffusion in model membranes studied by NMR. VIIth Int. Conf. on Magnetic Resonance in Biological Systems. St. Jovite, Quebec, Canada.Google Scholar
Lindblom, G. & Wennerström, H. (1977). Amphiphile diffusion in model membrane systems studied by pulsed NMR. Biophys. Chem. 6, 167.CrossRefGoogle ScholarPubMed
Lindblom, G., Larsson, K., Johansson, L., Fontell, K. & Forsén, S. (1979). The cubic phase of monoglyceride–water systems. Arguments for a structure based upon lamellar bilayer units. J. Am. chem. Soc. 101, 5465.CrossRefGoogle Scholar
Lindblom, G., Johansson, L. B.-Å. & Arvidson, G. (1980). On the effect of cholesterol in membranes. Pulsed NMR measurements of lipid lateral diffusion. (Submitted.)Google Scholar
Lonsdale, K. (1937). Magnetic anisotropy and electronic structure of aromatic molecules. Proc. R. Soc. A 159, 149.Google Scholar
Luckhurst, G. R., Setaka, M. & Zannoni, C. (1974). An electron resonance investigation of molecular motion in the smectic A mesophase of a liquid crystal. Molec. Phys. 28, 49.CrossRefGoogle Scholar
Luckhurst, G. R., Setaka, M., Seates, R. N. & Zannoni, (1979). Orientational order in lamellar G phase of the sodium decanote-n-decanote-n-decanol–water system. An electron resonance investigation. Molec. Phys. 38, 1507.CrossRefGoogle Scholar
Mantsch, H. H., Saito, H. & Smith, C. P. (1977). Deuterium magnetic resonance, applications in chemistry, physics and biology. In Progress in Nuclear Magnetic Resonance Spectroscopy, vol. II (ed. Emsley, J. W., Feenly, J. and Sutcliffe, L. H.), part 4, p. 211. Oxford: Pergamon Press.Google Scholar
Marčelja, S. (1974). Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. biophys. Acta 367, 16.CrossRefGoogle ScholarPubMed
Naqvi, K. R. & Wild, U. P. (1975). The use of E-type delayed fluorescence for probing rotational relaxation. Chem. phys. Letters 36, 222.CrossRefGoogle Scholar
Naqvi, K. R. (1980). Personal communication.Google Scholar
Nordén, B. & Davidsson, Å. (1976). Linear dichroism of free base tetraphenyl porphin. Chem. phys. Letters 37, 433.CrossRefGoogle Scholar
Nordén, B. (1978). Applications of linear dichroism spectrosopy. App. Spec. Rev. 14, (2), 157.CrossRefGoogle Scholar
Nordio, P. L. & Busolin, P. (1971). Electron spin resonance line shapes in partially oriented systems. J. chem. Phys. 55, 5485.CrossRefGoogle Scholar
Perrin, F. (1936). Diminution de la polarisation de la fluorescence solutions résoltant du mouvement brownien de rotation. Acta Phys. Polon. 5, 335.Google Scholar
Priestly, E. B., Wojtowicz, P. J. & Sheng, P. (1975). Introduction to Liquid Crystals (ed. Priestly, E. B. et al. ). New York: Plenum.CrossRefGoogle Scholar
Sackmann, E. & Möhwald, H. (1973). On optical polarization measurements in liquid crystals. J. chem. Phys. 58, 5407.CrossRefGoogle Scholar
Saupe, A. (1964). Kernresonanzen in kristallinen Flüssigkeiten und kristallinflüssigen Lösungen. Teil. I Z. Naturf. 19 A, 161.CrossRefGoogle Scholar
Seelig, J. (1977). Deuterium magnetic resonance: theory and application to lipid membranes. Q. Rev. Biophys. 10, 353.CrossRefGoogle ScholarPubMed
Seelig, J. (1978). 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim. biophys. Acta 515, 105.CrossRefGoogle ScholarPubMed
Shinitzky, M. & Barenholz, Y. (1978). Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. biophys. Acta 515, 367.CrossRefGoogle ScholarPubMed
Smith, I. C. P. & Butler, K. W. (1976). Oriented lipid systems as model membranes. In Spin labeling. Theory and applications (ed. Berliner, L. J.), p. 411. New York: Academic Press.CrossRefGoogle Scholar
Söderman, O., Lindblom, G., Johansson, L. B.-Å. & Fontell, K. (1980 a). The structure of a lyotropic liquid crystalline phase that orients in a magnetic field. Mol. Cryst. Liquid Cryst. 59, 121.CrossRefGoogle Scholar
Söderman, O., Johansson, L. B.-Å., Lindblom, G. & Fontell, K. (1980 b). The structure of a lyotropic liquid crystalline phase that orients in a magnetic field. In Liquid Crystals of One- and Two-Dimensional Order (ed. Hefrich, W. and Heppke, G.). Berlin: Springer.Google Scholar
Soleillet, P. (1929). Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomnes de fluorescence. Ann. Phys. Paris 12, 23.CrossRefGoogle Scholar
Steinemann, A., Stark, G. & Läuger, P. (1972). Orientation of the porphyrin ring in artificial chlorophyll membranes. J. Membrane Biol. 9, 177.CrossRefGoogle ScholarPubMed
Steinfeld, J. I. (1974). Molecules and Radiation (ed. Rice, A. S.). New York: Harper & Row.Google Scholar
Tardell, H., Lindblom, G. & Arvidson, G. (Unpublished results.)Google Scholar
Ulmius, J., Wennerström, H., Lindblom, G. & Arvidṡon, G. (1975). Proton NMR bandshape studies of lamellar liquid crystals and gel phases containing lecithins and cholesterol. Biochim. biophys. Acta. 389, 197.CrossRefGoogle ScholarPubMed
Vaz, W. L. C., Austin, R. H. & Vogel, H. (1979). The rotational diffusion of cytochrome b 5 in lipid bilayer membranes. Influence of the lipid physical state. Biophys. J. 26, 415.CrossRefGoogle ScholarPubMed
Von Jena, A. & Lessing, H. E. (1979). Rotational diffusion of prolate and oblate molecules from absorption relaxation. Ber. Bunsenges. Phys. Chem. 83, 181.CrossRefGoogle Scholar
Waggoner, A. S. & Stryer, L. (1970). Fluorescent probes of biological membranes. Proc. natn. Acad. Sci. USA. 67, 579.CrossRefGoogle ScholarPubMed
Weiss, C., Kobayashi, H. & Gouterman, M. (1965). Spectra of porphyrines. III. Self-consistent molecular orbital calculations of porphyrin and related ring systems. J. Molec. Spectrosc. 16, 415.CrossRefGoogle Scholar
Wennerström, H. & Lindblom, G. (1977). Biological and model membranes studied by nuclear magnetic resonance of spin one half nuclei. Q. Rev. Biophys. 10, 67.CrossRefGoogle ScholarPubMed
Wennerström, H. (1980). Personal communication.Google Scholar
Wieslander, Å., Christiansson, A., Rilfors, L. & Lindblom, G. (1980). Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry N.Y. (In the Press.)Google Scholar