Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T05:40:39.108Z Has data issue: false hasContentIssue false

The neglected interface: the biology of water as a liquid-gas system*

Published online by Cambridge University Press:  17 March 2009

Knut Schmidt-Nielsen
Affiliation:
Department of Zoology, Duke University, Durham, North Carolina

Extract

Water, solutes and membranes have long been the subject of intensive research, and many excellent reviews have brought the major biological problems in focus, have discussed accomplishments, and have outlined unsolved problems. The most interesting results pertain to the role of membranes, whether ‘active’ or ‘passive’, which separate different solutions, in other words, membranes at a water–water inerface Liquid gas interfaces have receied less attention, and I therefore wish to review some biological problem which relate to such systems. I shall discuss a variety of phenomena which may have little in common, except that they all bear onthe transition of water between liquid and gas.

Type
Articles
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beament, J. W. L. (1958). The effect of temperature on the waterproofing mechanism of an insect. J. exp. Biol. 35, 494519.CrossRefGoogle Scholar
Beament, J. W. L. (1959). The waterproofing mechanism of arthropods. I. The effect of temperature on cuticle permeability in terrestrial insects and ticks. J. exp. Biol. 36, 391422.CrossRefGoogle Scholar
Beament, J. W. L. (1964). The active transport and passive movement of water in insects. In: Advances in Insect Physiology, vol. II, pp. 67129. Eds.Beament, J. W. L., Treherne, J. E. and Wigglesworth, V. B.. London: Academic Press.Google Scholar
Beament, J. W. L. (1968). Lipid layers and membrane models. In: Insects and Physiology, pp. 303– 14. Eds.Beament, J. W. L. and Treherne, J. E.. New York: Elsevier.Google Scholar
Beament, J. W. L., Nobel-Nesbitt, J. & Watson, J. A. L. (1964). The waterproofing mechanism of arthropods. III. Cuticular permeability in the firebrat Thermobia domestica (Packard). J. exp. Biol. 41, 323–30.CrossRefGoogle Scholar
Bentley, P. J. (1966). Adaptations of amphibia to arid enviromnents. Science, N.Y. 152, 619–23.CrossRefGoogle Scholar
Bentley, P. J. & Schmidt-Nielsen, K. (1966).Cutaneous water loss in reptiles. Science, N.Y. 151, 1547–9.CrossRefGoogle ScholarPubMed
Browning, T. O. 1954 Water balance in the tick Ornithodorus moubataMurray, with particular reference to the influence of carbon dioxide on the uptake and loss of water. J. exp. Biol. 31, 331–40.CrossRefGoogle Scholar
Burch, G. E. & Winsor, T. (1944). Rate of insensible perspiration (diffusion of water) locally through living and dead human skin. Archs. intern. Med. 74, 437–44.CrossRefGoogle Scholar
Chew, R. M. (1955). The skin and respiratory water losses of Peromyscus maniculatus sonoriensis. Ecology 36, 463–7.CrossRefGoogle Scholar
Church, N. S. (1960). Heat loss and the body temperatures of flying insects. I. Heat loss by evaporation of water from the body. J. exp. Biol. 37, 171–85.CrossRefGoogle Scholar
Cohen, N. W. (1952). Comparative rates of dehydration and hydration in some California salamanders. Ecology 33, 462–79.CrossRefGoogle Scholar
Comfort, A. (1957). Age and growth. Proc. Malac. Soc. Lond. 32, 219–41.Google Scholar
Curran, P. F. & Macintosh, J. R. (1962). A model system for biological water transport. Nature, Lond. 193, 347–8.CrossRefGoogle Scholar
Diamond, M. M. (1962). 0The mechanism of water transport by the gall bladder. J. Physiol. 161, 503–27.CrossRefGoogle Scholar
Edney, E. B. (1947). Laboratory studies on the bionomics of the rat fleas,Xenopsylla brasiliensis Baker and X. cheopsis Roths. II. Water relations during thecocoon period. Bull. ent. Res. 38, 236–80.Google Scholar
Edney, E. B. (1951). The evaporation of water from woodlice and the millipede Glomeris. J. exp. Biol. 28, 91115.CrossRefGoogle ScholarPubMed
Edney, E. B. (1966). Absorption of water vapour from unsaturated air by Arenivago sp. (Polyphagidae, Dictyoptera). Comp. Biochem. Physiol 19 387408.CrossRefGoogle Scholar
Edney, E. B. (1967). Water balance in desert arthropods. Science, N.Y. 156 1059–66.CrossRefGoogle ScholarPubMed
Gjönnes, B. & Schmidt-Nielsen, K. (1952). Respiratory characteristics of kangaroo rat blood. J. cell. comp. Physiol. 39, 147–52.CrossRefGoogle ScholarPubMed
Grimstone, A. V., Mullinger, A. M. & Ramsay, J. A. (1968).Further studies on the rectal complex of the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). Phil. Trans. R. Soc. 253, 343–82.Google Scholar
Hall, F. G. (1922). The vital limit of exsiccation of certain animals. Biol. Bull. mar. biol. Lab., Woods Hole 42, 3151.CrossRefGoogle Scholar
Jackson, D. C. & Schmidt-Nielsen, K. (1964). Countercurrent heat exchange in the respiratory passages. Proc. natn. Acad. Sci. U.S.A. 51, 1192–7.CrossRefGoogle ScholarPubMed
Knülle, W. (1965). Die Sorption und Transpiration des Wasserdampfes bei der Mehlmilbe (Acarus siro L.). Z. vergl. Physiol. 49, 586604.CrossRefGoogle Scholar
Lees, A. D. (1946). The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 120.CrossRefGoogle ScholarPubMed
Locke, M. (1964). The structure and formation of the integument in insects. In: The Physiology of Insecta, vol. III, pp. 379470. Ed.Rockstein, M.. New York: Academic Press.Google Scholar
Ludwig, D. (1947). The effect of different relative humidities on respiratory metabolism and survival of the grasshopper Chortophaga viridifasciata deGeer. Physiol. Zoöl. 10, 342–51.CrossRefGoogle Scholar
Machin, J. (1964). The evaporation of water from Helix aspersa. I. The nature of the evaporating surface. J. exp. Biol. 41, 759–69.CrossRefGoogle ScholarPubMed
Machin, J. (1966). The evaporation of water from Helix aspersa. IV. Loss from the mantle of the inactive snail. J. exp. Biol. 45, 269–78.CrossRefGoogle ScholarPubMed
Machin, J. (1967). Structural adaptation for reducing water loss in three species of terrestrial snail. J. Zool. 152, 5565.CrossRefGoogle Scholar
Machin, J. (1968). The permeability of the epiphragm of terrestrial snailsto water vapor. Biol. Bull. mar. biol. Lab., Woods Hole, 134, 8795.CrossRefGoogle Scholar
Mead-Briggs, A. R. (1956). The effect of temperature upon the permeabilityto water of arthropod cuticles. J. exp. Biol. 33, 737–49.CrossRefGoogle Scholar
Mellanby, K. (1932). The effect of atmospheric humidity on the metabolism of the fasting mealworm (Tenebrio molitor L., Coleoptera). Proc. R. Soc. B. III, 376–90.Google Scholar
Noble, G. K. (1931). The Biology of the Amphibia, pp. vii + 577. New York:McGraw-Hill Book Co.CrossRefGoogle Scholar
Philips, J. E. (1964). Rectal absorption in the desert locust, Schistocerca gregaria Forskal. J. exp. Biol. 41, 1538.Google Scholar
Prange, H. D. & Schmidt-Nielsen, K. (1969). Evaporative water loss in snakes. Comp. Biochem. Physiol. 28, 973–5.CrossRefGoogle Scholar
Ramsay, J. A. (1964). The rectal complex of the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). Phil. Trans. R. Soc. 248, 279314.Google Scholar
Ruibal, R. (1962). The adaptive value of bladder water in the toad, Bufo cognatus. Physiol. Zoöl. 35, 218–23.CrossRefGoogle Scholar
Schmidt-Nielsen, B. & Schmidt-Nielsen, K. (1950). Pulmonary water loss in desert rodents. Am. J. Physiol. 162, 31–6.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K. & Bentley, P. J. (1966). Desert tortoise Gopherus agassizii: cutaneous water loss. Science, N.Y. 154, 911.Google ScholarPubMed
Schmidt-Nielsen, K., Schmidt-Nielsen, B., Jarnum, S. A. & Houpt, T. R. (1957). Body temperature of the camel and its relation to water economy. Am. J. Physiol. 188, 103–12.CrossRefGoogle ScholarPubMed
Solomon, M. E. (1966). Moisture gains, losses and equilibria of flour mites, Acarus siro L. in comparison with larger arthropods. Ent. exp. appl. 9, 2541.CrossRefGoogle Scholar
Tennent, D. M. (1946). A study of the water losses through the skin in the rat. Am. J. Physiol. 145, 436–40.CrossRefGoogle ScholarPubMed
Tercafs, R. R. (1963). Phénomènes de perméabilité au niveau de la peau des Reptiles. Archs. int. Physiol. Biochim. 71, 318–20.Google Scholar
Thorson, T. B. (1955). The relationship of water economy to terrestrialismin amphibians. Ecology 36, 100–16.CrossRefGoogle Scholar
Thorson, T. B. & Svihla, A. (1943). Correlation of the habitats of amphibians with their ability to survive the loss of body water. Ecology 24, 374–81.CrossRefGoogle Scholar
Wharton, G. W. & Kanungo, K. (1962). Some effects of temperature and relative humidity on water-balance in females of the spiny rat mite, Echinolaelaps echidninus (Acarina: Laelaptidae). Ann. ent. Soc. Am. 55. 483–92.CrossRefGoogle Scholar
Wigglesworth, V. B. (1945). Transpiration through the cuticle of insects. J. exp. Biol. 21, 97114.CrossRefGoogle Scholar