Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T04:54:52.773Z Has data issue: false hasContentIssue false

Methodology of magnetic resonance imaging

Published online by Cambridge University Press:  17 March 2009

R. R. Ernst
Affiliation:
Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule, 8092 Zürich, Switzerland

Abstract

A survey of magnetic resonance imaging techniques is presented. Emphasis is put on the basic types of measurement procedures rather than, discussing all variants proposed so far. The general experimental procedure consists of two phases, the preconditioning period and the image formation period. While the preconditioning period determines the image contrast, the image formation process is responsible for image resolution. Means to improve sensitivity and to minimize measurement time are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abragam, A. (1961). Principles of Nuclear Magnetism. Oxford: Clarendon Press.Google Scholar
Ackerman, J. J. H., Grove, T. H., Wong, G. G., Gadian, D. G. & Radda, G. K. (1980). Mapping of metabolites in whole animals by 31P-NMR using surface coils. Nature 283, 167170.CrossRefGoogle ScholarPubMed
Andrew, E. R., Bottomley, P. A., Hinshaw, W. S., Holland, G. N., Moore, W. S. & Simaroj, C. (1977). NMR images by the multiple sensitive point method: application to larger biological systems. Physics Med. Biol. 22, 971974.CrossRefGoogle ScholarPubMed
Andrew, E. R., Bottomley, P. A., Hinshaw, W. S., Holland, G. N., Moore, W. S. & Simaroj, C. (1978). NMR imaging in medicine and biology. Proc. 20th Ampère Cong. Tallinn.Google Scholar
Aue, W. P., Müller, S., Cross, T. A. & Seelig, J. (1984). Volume selective excitation: a novel approach to topical NMR. J. magn. Reson. 56, 350354.Google Scholar
Aue, W. P., Müller, S. & Seelig, J. (1985). Localized 13C-NMR spectra with enhanced sensitivity obtained by volume-selective excitation. J. magn. Reson. 61, 392396.Google Scholar
Bendall, M. R. (1986). Surface coil techniques for in vivo NMR. Bull. magn. Reson. 8, 1742.Google Scholar
Bendall, M. R. & Gordon, R. E. (1983). Depth and refocusing pulses designed for multipulse NMR with surface coils. J. magn. Reson. 53, 365385.Google Scholar
Bernardo, M. L. & Lauterbur, P. C. (1983). Rapid medium-resolution 3D NMR zeugmatographic imaging of the head. Eur. J. Radiol. 3, 257.Google ScholarPubMed
Bradford, R., Clay, C. & Strick, E. (1951). A steady-state transient technique in nuclear induction. Phys. Rev. 84, 157158.CrossRefGoogle Scholar
Brooker, H. R. & Hinshaw, W. S. (1978). Thin-section NMR ranging. J. magn. Reson. 30, 129131.Google Scholar
Brooks, R. A. & Di Chiro, G. (1976). Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Physics Med. Biol. 21, 689732.Google Scholar
Brunner, P. & Ernst, R. R. (1979). Sensitivity and performance time in NMR imaging. J. magn. Reson. 33, 83106.Google Scholar
Budinger, T. F. & Gullberg, G. T. (1974). Three-dimensional reconstruction of isotope distributions. Physics Med. Biol. 19, 387389.CrossRefGoogle ScholarPubMed
Carr, H. Y. (1958). Steady-state free precession in nuclear magnetic resonance. Phys.Rev. 112, 16931701.CrossRefGoogle Scholar
Damadian, R. (1971). Tumor detection by nuclear magnetic resonance. Science 171, 11511153.CrossRefGoogle ScholarPubMed
Damadian, R. U.S. Patent 3.789.832, filed 17 March, 1972.CrossRefGoogle Scholar
Damadian, R., Goldsmith, M. & Minkoff, L. (1977). NMR in cancer: Fonar image of the live human body. Physiol. Chem. and Phys. 9, 97100.Google ScholarPubMed
Damadian, R., Minkoff, L., Goldsmith, M. & Koutcher, J. A. (1978). Field focusing nuclear magnetic resonance (FONAR) and the formation of chemical scans in man. Naturwissenschaften 65, 250251.CrossRefGoogle Scholar
Edelstein, W. A., Hutchison, J. M. S., Johnson, G. & Redpath, T. W. (1980). Spin warp NMR imaging and applications to human whole-body imaging. Physics Med.Biol. 25, 751756.CrossRefGoogle Scholar
Ernst, R. R. (1966). Sensitivity enhancement in magnetic resonance. Adv. in magn.Reson. 2, 1135.Google Scholar
Ernst, R. R. & Anderson, W. A. (1966). Application of Fourier transform spectroscopy to magnetic resonance. Rev. Set. Instrum. 37, 93102.CrossRefGoogle Scholar
Ernst, R. R., Bodenhausen, G. & Wokaun, A. (1987). Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press.Google Scholar
Gadian, D. G. (1982). Nuclear Magnetic Resonance and its Applications to Living Systems. Oxford: Clarendon Press.Google Scholar
Garroway, A. N., Grannell, P. K. & Mansfield, P. (1974). Image formation by a selective irradiative process. J. phys. Chem.: Solid St. Phys. 7, L457L462.Google Scholar
Gordon, R. E., Hanley, P. E. & Shaw, D. (1982). Topical magnetic resonance. Prog. nucl. magn. Reson. Spectrosc. 15, 147.CrossRefGoogle Scholar
Gordon, R. E., Hanley, P. E., Shaw, D., Gadian, D. G., Radda, G. K., Styles, P., Bore, P. J. & Chan, L. (1980). Localization of metabolites in animals using 31P topical magnetic resonance. Nature 287, 736738.Google Scholar
Haase, A., Frahm, J., Matthaei, D., Hanicke, W. & Merboldt, K.-D. (1986). Flash imaging, rapid NMR imaging using low flip-angle pulses. J. magn. Reson. 67, 258266.Google Scholar
Hennig, J., Nauerth, A., Friedburg, H. & Ratzel, D. (1984). Ein neues schnellbildverfahren für die kernspintomographie. Radiology 24, 579.Google Scholar
Hinshaw, W. S. (1974 a). Spin mapping: the application of moving gradients to NMR. Physics Lett. A48, 8788.CrossRefGoogle Scholar
Hinshaw, W. S. (1974 b). The application of time dependent field gradients to NMR spin mapping. Proc 18th Ampère Cong. Nottingham, p. 433.Google Scholar
Hinshaw, W. S. (1976). Image formation by nuclear magnetic resonance: the sensitive point method. J. appl. Phys. 47, 37093721.CrossRefGoogle Scholar
Hinshaw, W. S. & Lent, A. H. (1983). An introduction to NMR imaging: from Bloch equation to the imaging equation. Proc. Inst. elect. Electron. Engrs. 71, 338350.CrossRefGoogle Scholar
Hinshaw, W. S., Andrew, E. R., Bottomley, P. A., Holland, G. N., Moore, W. S. & Worthington, B. S. (1978). Display of cross-sectional anatomy by nuclear magnetic resonance imaging. Br. J. Radiol. 51, 273280.CrossRefGoogle ScholarPubMed
Hinshaw, W. S., Bottomley, P. A. & Holland, G. N. (1977). Radiographic thinsection image of the human wrist by nuclear magnetic resonance. Nature 270, 722723.CrossRefGoogle ScholarPubMed
Holland, G. N., Bottomley, P. A. & Hinshaw, W. S. (1977). 19F magnetic resonance imaging. J. magn. Reson. 28, 133136.Google Scholar
Hoult, D. I. (1977). Zeugmatography: a criticism of the concept of a selective pulse in the presence of a field gradient. J. magn. Reson. 26, 165167.Google Scholar
Hoult, D. I. (1979). Rotating frame zeugmatography. J. magn. Reson. 33, 183197.Google Scholar
Hoult, D. I. & Lauterbur, P. C. (1979). The sensitivity of the zeugmatographic experiment involving human samples. J. magn. Reson. 34, 425433.Google Scholar
Hutchison, J. M. S., Goll, C. C. & Mallard, J. R. (1974). In-vivo imaging of body structures using proton resonance. Proc. 18th Ampère Cong. Nottingham, p. 283.Google Scholar
Hutchison, J. M. S., Sutherland, R. J. & Mallard, J. R. (1978). NMR imaging: image recovery under magnetic fields with large non-uniformities. J. phys. Eng.: Sci. Instrum. 11, 217221.Google Scholar
Jaklovsky, J. (1983). NMR Imaging, A Comprehensive Bibliography. Reading, Mass.: Addison Wesley.Google Scholar
Johnson, G., Hutchison, J. M. S., Redpath, T. W. & Eastwood, L. M. (1983). Improvements in performance time for simultaneous three-dimensional NMR imaging. J. magn. Reson. 54, 374384.Google Scholar
Kaufman, L., Crooks, L. E. & Margulis, A. R. (1981). Nuclear Magnetic Resonance Imaging in Medicine. Tokyo: Iggakun-Shoin.Google Scholar
Kumar, Anil, Welti, D. & Ernst, R. R. (1975 a). Imaging of macroscopic objects by NMR Fourier zeugmatography. Naturwissenschqften 62, 34.CrossRefGoogle Scholar
Kumar, , Anil, , Welti, D. & Ernst, R. R. (1975 b). NMR Fourier zeugmatography. J. magn. Reson. 18, 6983.Google Scholar
Lauterbur, P. C. (1972). Measurements of local nuclear magnetic resonance relaxation times. Bull. Am. phys. Soc. 18, 86.Google Scholar
Lauterbur, P. C. (1973 a). Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190191.CrossRefGoogle Scholar
Lauterbur, P. C. (1973 b). Stable isotope distributions by NMR zeugmatography. Proc. 1st Int. Conf. on Stable Isotopes in Chemistry, Biology and Medicine.Google Scholar
Lauterbur, P. C. (1974 a). Magnetic resonance zeugmatography. Pure appl. Chem. 40, 149157.CrossRefGoogle Scholar
Lauterbur, P. C. (1974 b). Magnetic resonance zeugmatography. Proc. 18th Ampère Cong., Nottingham, p. 27.Google Scholar
Lauterbur, P. C. (1977). In: NMR in Biology (ed. Dewk, R. A., Campbell, I.D., Richards, R. E., & Williams, R. J. P., p. 323. London: Academic Press.Google Scholar
Lauterbur, P. C. (1979). Medical imaging by nuclear magnetic resonance zeugmatography. IEEE Trans, on Nuclear Sciences (NS) 26, 28082811.Google Scholar
Lauterbur, P. C., Kramer, D. M., House, W. V. & Chen, C.-N. (1975). zeugmatographic high resolution NMR spectroscopy: images of chemical inhomogeneity within macroscopic objects. J. Am. chem. Soc. 97, 68666868.Google Scholar
Mansfield, P. (1976). Proton spin imaging by NMR. Contemp. Phys. 17, 553.Google Scholar
Mansfield, P. (1977). Multi-planar image formating using NMR spin echoes. J. phys. Chem.: Solid St. Phys. 10, L55L58.Google Scholar
Mansfield, P. & Grannell, P. K. (1973). NMR diffraction in solids. J. Phys. C6, L422L426.Google Scholar
Mansfield, P. & Grannell, P. K. (1975). ‘Diffraction’ and microscopy in solids and liquids by NMR. Phys. Rev. B12, 36183634.Google Scholar
Mansfield, P., Grannell, P. K. & Maudsley, A. A. (1974). Diffraction and microscopy in solids and liquids by NMR. Proc. 18th Ampère Cong. Nottingham, p. 431.Google Scholar
Mansfield, P. & Maudsley, A. A. (1976 a). Planar and line-scan spin imaging by NMR. Proc. 19th Ampère Cong. Heidelberg, p. 247.Google Scholar
Mansfield, P. & Maudsley, A. A. (1976 b). Line scan proton spin imaging in biological structures by NMR. Physics Med. Biol. 21, 847852.Google Scholar
Mansfield, P. & Maudsley, A. A. (1976 c). Planar spin imaging by NMR. J. phys Chem.: Solid St. Phys. 9, L409411.Google Scholar
Mansfield, P. & Maudsley, A. A. (1977 a). Medical imaging by NMR. Br. J. Radiol. 50, 188194.CrossRefGoogle ScholarPubMed
Mansfield, P. & Maudsley, A. A. (1977 b). Planar spin imaging by NMR. J. magn. Reson. 27, 101119.Google Scholar
Mansfield, P., Maudsley, A. A. & Baines, T. (1976). Fast scan proton density imaging by NMR. J. Phys. E9, 271278.Google Scholar
Mansfield, P., Maudsley, A. A., Morris, P. G. & Pykett, I. L. (1979). Selective pulses in NMR imaging: a reply to criticism. J. magn. Reson. 33, 261274.Google Scholar
Mansfield, P. & Morris, P. G. (1982). NMR imaging in biomedicine. Adv. in magn. Reson. Suppl. 2.Google Scholar
Mansfield, P. & Pykett, I. L. (1978). Biological and medical imaging by NMR. J. magn. Reson. 29, 355373.Google Scholar
Morris, P. G. (1986). Nuclear Magnetic Resonance Imaging in Medicine and Biology. Oxford: Clarendon Press.Google Scholar
Partain, C. L., Price, R. R., Patton, J. A., Kulkarni, M. V. & James, A. E. (eds) (1987). Magnetic Resonance (MR) Imaging, 2nd edn. Philadelphia: W. B. Saunders Company.Google Scholar
Petersen, S. B., M¨ller, R. N. & Rinck, P. A. (1985). An Introduction to Biomedical Nuclear Magnetic Resonance. Stuttgart, New York: G. Thieme Verlag.Google Scholar
Post, H., Ratzel, D. & Brunner, P. (1985). Europäische Patentschrift, EP0089534B1.Google Scholar
Roth, K. (1984). NMR-Tomographie und Spektroskopie in der Medizin. Berlin: Springer.Google Scholar
Sekihara, K., Kuroda, M. & Kohno, H. (1984). Effects of field non-uniformities on NMR images. Magn. Reson. in Med. 1, 247250.Google Scholar
Shaka, A. J. & Freeman, R. (1984). Spatially selective radio-frequency pulses. J. magn. Reson. 59, 169176.Google Scholar
Shepp, L. A. (1980). Computerized tomography and nuclear magnetic resonance. J. Comput. Assist. Tomogr. 4, 94107.Google Scholar
Sutherland, R. J. & Hutchison, J. M. S. (1978). Three-dimension NMR imaging using selective excitation. J. phys. Eng.: Sci Instrum. 11, 7983.Google Scholar
Taylor, D. J., Bore, P. J., Styles, P., Gadian, D. G. & Radda, G. K. (1983). Bioenergetics of intact human muscle: a 31P nuclear magnetic resonance study. Molec. Biol. Med. 1, 7794.Google Scholar
Tomlinson, B. L. & Hill, H. D. W. (1973). Fourier synthesized excitation of nuclear magnetic resonance with application to homonuclear decoupling and solvent line suppression. J. chem. Phys. 59, 17751784.Google Scholar
Tycko, R. & Pines, A. (1984). Spatial localization of NMR signals by narrow-band inversion. J. magn. Reson. 60, 156160.Google Scholar
Wende, S. & Thelen, M. (ed.) (1983). Kernresonanz-Tomographie in der Medizin. Berlin: Springer.CrossRefGoogle Scholar