Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T18:18:19.220Z Has data issue: false hasContentIssue false

Mechanisms of tolerance to DNA lesions in mammalian cells

Published online by Cambridge University Press:  17 March 2009

Carlos F. M. Menck
Affiliation:
Department of Biochemistry, Institute of Chemistry, University of São Paulo, C.P. 20780, São Paulo, Brasil
R. Ivan Schumacher
Affiliation:
Department of Biochemistry, Institute of Chemistry, University of São Paulo, C.P. 20780, São Paulo, Brasil

Extract

In recent years it has become clear that different pathways are involved in the process of removing lesions from DNA. In spite of a continuous surveillance of the genetic integrity by repair enzymes, quite often lesions are not eliminated before the portion of the genome where they have been inserted is used for DNA replication or transcription. Actually, the number of unexcised lesions a cell can tolerate without significantly losing its capacity to reproduce is surprising. As an example, human fibroblasts from certain patients with the genetic disease xeroderma pigmentosum (XP)† are virtually unable to excise pyrimidine dimers, the major DNA lesion produced by short-wavelength UV light.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aaronson, S. A. & Lytle, C. D. (1970). Decreased host cell reactivation of irradiated SV40 virus in xeroderma pigmentosum. Nature, Lond. 228, 359361.CrossRefGoogle ScholarPubMed
Abanobi, S. E., Columbano, A., Mulivor, R. A., Rajalakshmi, S. & Sarma, D. S. R. (1980). In vivo replication of hepatic DNA of rats treated with dimethylnitrosamine: presence of dimethylnitrosamine-induced O6-methyl guanine, N7-methyl guanine and N3-methyl adenine in the replicated hybrid DNA. Biochemistry N.Y. 19, 13821387.CrossRefGoogle Scholar
Ali, R. & Sauerbier, W. (1978). Effects of UV irradiation and post irradiation incubation on heterogeneous nuclear RNA size in murine cells. Biophys. J. 22, 393411.CrossRefGoogle ScholarPubMed
Barret, J. C. & Ts'o, P. O. P. (1978). Relationship between somatic mutation and neoplastic transformation. Proc. natn. Acad. Sci. U.S.A. 75, 32973301.CrossRefGoogle Scholar
Barret, J. C., Tsutsui, T. & Ts'o, P. O. P. (1978). Neoplastic transformation induced by a direct perturbation of DNA. Nature, Lond. 274, 229232.CrossRefGoogle Scholar
Benjamin, R. C. & Gill, D. M. (1978). A possible role for poly ADP-ribose in DNA repair. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 337340. New York: Academic Press.CrossRefGoogle Scholar
Berger, N. A., Sikorski, G. W., Petzold, S. J. & Kurohara, K. K. (1980). Defective poly (adenosine diphosphoribose) synthesis in xeroderma pigmentosum. Biochemistry, N.Y. 19, 289293.CrossRefGoogle ScholarPubMed
Bockstahler, L. E. & Lytle, D. D. (1970). UV light enhanced reactivation of a mammalian virus. Biochem. biophys. Res. Commun. 41, 184189.CrossRefGoogle ScholarPubMed
Bootsma, D. (1978). Xeroderma pigmentosum. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Frieberg, E. C. and Fox, C. F.), pp. 589601. New York: Academic Press.CrossRefGoogle Scholar
Borek, C. (1980). X-ray induced in vitro neoplastic transformation of human diploid cells. Nature, Lond. 283, 776777.CrossRefGoogle ScholarPubMed
Bowden, G. T., Giesselbach, B. & Fusenig, N. E. (1978). Postreplication repair of DNA in UV light irradiated normal and malignantly transformed mouse epidermal cell cultures. Cancer Res. 38, 27092718.Google Scholar
Bowden, G. T. & Yuspa, S. H. (1979). Repair of daughter strand gaps in nascent DNA from mouse epidermal cells treated with dihydrodiol epoxide derivatives of benzo (α) pyrene. Biochim. biophys. Acta 565, 6783.CrossRefGoogle Scholar
Buhl, S. N. & Regan, J. D. (1973). Endonuclease-sensitive sites in daughter DNA of UV-irradiated cells. Nature, Lond. 246, 484.CrossRefGoogle Scholar
Buhl, S. N., Setlow, R. B. & Regan, J. D. (1973). Recovery of the ability to synthesize DNA in segments of normal size at long times after UV irradiation of human cells. Biophys. J. 13, 12651275.CrossRefGoogle ScholarPubMed
Buhl, S. N., Stillman, R. M., Setlow, R. B. & Regan, J. D. (1972). DNA chain elongation and joining in normal human and xeroderma pigmentosum cells after UV-irradiation. Biophys. J. 12, 11831191.CrossRefGoogle Scholar
Bushnell, D. E., Yager, J. D. Jr, Becker, D. E. & Potter, V. R. (1974). Inhibition of m-RNA accumulation but not translation in UV irradiated hepatoma cells. Biochem. biophys. Res. Commun. 57, 947956.CrossRefGoogle Scholar
Caillet-fauquet, P., Defais, M. & Radman, M. (1977). Molecular mechanisms of induced mutagenesis. Replication in vivo of bacteriophage Φ × 174 single-stranded, UV light-irradiated DNA in intact and irradiated DNA in intact and irradiated host cells. J. molec. Biol. 117, 95110.CrossRefGoogle Scholar
Carrier, W. L. & Setlow, R. B. (1970). Endonuclease from Micrococcus luteus which has activity toward UV-irradiated DNA: purification and properties. J. Bact. 102, 178186.CrossRefGoogle Scholar
Cerutti, P. A., Sessions, F., Hariharan, P. V. & Lusby, A. (1978). Repair of DNA damage induced by benzo (α) pyrene diol-epoxides I and II in human alveolar tumor cells. Cancer Res. 38, 21182124.Google Scholar
Chan, G. L. & Little, J. B. (1979). Resistance of plateau-phase human normal and XP fibroblasts to the cytotoxic effect of UV light. Mutat. Res. 63, 401412.CrossRefGoogle Scholar
Chen, Y. C., Bohn, E. W., Planck, S. R. & Wilson, S. H. (1979). Mouse DNA polymerase α: subunit structure and identification of a species with associated exonuclease. J. biol. Chem. 254, 1167811687.CrossRefGoogle ScholarPubMed
Chiu, F. H. & Rauth, A. M. (1972). Nascent DNA synthesis in UV-light-irradiated mouse L cells. Biochim. biophys. Acta 259, 164174.CrossRefGoogle Scholar
Clarkson, J. M. & Hewitt, R. R. (1976). Significance of dimers to the size of newly-synthesized DNA in UV-irradiated Chinese hamster ovary cells. Biophys. J. 16, 11551164.CrossRefGoogle Scholar
Cleaver, J. E. (1965). Investigation into the effects of UV light on the rate of DNA synthesis in mammalian cells. Biochim. biophys. Acta 108, 4252.CrossRefGoogle ScholarPubMed
Cleaver, J. E. (1978). DNA repair and its coupling to DNA replication in cells. Biochim. biophys. Acta 516, 489516.Google Scholar
Cleaver, J. E. & Thomas, G. H. (1969). Single strand interruptions in DNA and the effect of caffeine in Chinese hamster cells irradiated with UV-light. Biochem. biophys. Res. Commun. 36, 203208.CrossRefGoogle Scholar
Coppey, J. & Nocentini, S. (1973). Multiplicity effect on the survival of UV-irradiated herpes simplex viruses. Int. J. Radiat. Biol. 24, 645647.Google Scholar
Cordeiro-stone, M., Schumacher, R. I. & Meneghini, R. (1979). Structure of replication fork in UV light irradiated human cells. Biophys. J. 27, 287300.CrossRefGoogle ScholarPubMed
Dahle, D., Griffiths, T. D. & Carpenter, J. G. (1980). Inhibition and recovery of DNA synthesis in UV-irradiated Chinese hamster V-79 cells. Photochem. & Photobiol. 32, 157165.CrossRefGoogle ScholarPubMed
D'ambrosio, S. M., Aebersold, P. M. & Setlow, R. B. (1978). Enhancement of post-replication repair in UV light irradiated Chinese hamster cells by irradiation in G2 or S phase. Biophys. J. 23, 7178.CrossRefGoogle ScholarPubMed
D'ambrosio, S. M. & Setlow, R. B. (1976). Enhancement of post-replication repair in Chinese hamster cells. Proc. natn. Acad. Sci. U.S.A. 73, 23962400.CrossRefGoogle Scholar
D'ambrosio, S. M. & Setlow, R. B. (1978). On the presence of UV-endonuclease sensitive sites in daughter DNA of UV-irradiated mammalian cells. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 499503. New York: Academic Press.CrossRefGoogle Scholar
Das, Gupta U. B. & Summers, W. C. (1978). UV reactivation of herpes simplex virus in mutagenic and inducible in mammalian cells. Proc. natn. Acad. Sci. U.S.A. 75, 23782381.Google Scholar
Day, R. S. III, (1974). Cellular reactivation of UV-irradiated human adenovirus 2 in normal and xeroderma pigmentosum fibroblasts. Photochem. & Photobiol. 19, 913.CrossRefGoogle Scholar
Domon, M., Barton, B., Porte, A. & Rauth, A. M. (1970). The interaction of caffeine with UV-light irradiated DNA. Int. J. Radiat. Biol. 17, 395399.Google Scholar
Domon, M. & Rauth, A. M. (1968). UV irradiation of mouse L cells: effects on DNA synthesis and progression through the cell cycle. Radiat. Res. 35, 350368.CrossRefGoogle Scholar
Domon, M. & Rauth, A. M. (1969). UV-light irradiation of mouse L cells: effects on cells in the DNA synthesis phase. Radiat. Res. 40, 414429.CrossRefGoogle ScholarPubMed
Domon, M. & Rauth, A. M. (1973). Cell cycle specific recovery from fractionated exposures to UV light. Radiat. Res. 55, 8192.CrossRefGoogle Scholar
Doniger, J. (1978). DNA replication in UV light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair. J. molec. Biol. 120, 433446.CrossRefGoogle ScholarPubMed
Doniger, J. & Di, Paolo J. A. (1980). The early and late modes of DNA replication in UV irradiated Syrian hamster embryo cells. Biophys. J. 31, 247254.CrossRefGoogle ScholarPubMed
Edenberg, H. J. (1975). Inhibition of DNA synthesis by UV light. In Molecular Mechanisms for Repair of DNA, Part B (ed. Hanawalt, P. C. and Setlow, R. B.), pp. 631633. New York: Plenum Press.CrossRefGoogle Scholar
Edenberg, H. J. (1976). Inhibition of DNA replication by UV light. Biophys. J. 16, 849859.CrossRefGoogle Scholar
Edenberg, H. J. (1978). DNA replication in UV-irradiated mammalian cells. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 489492. New York: Academic Press.CrossRefGoogle Scholar
Edenberg, H. & Huberman, J. (1975). Eukaryotic chromosome replication. A. Rev. Genet. 9, 245284.CrossRefGoogle ScholarPubMed
Ehmann, U. K., Gehring, U. & Tomkins, G. M. (1976). Caffeine, cyclic AMP and post-replication repair in mammalian cell DNA. Biochim. biophys. Acta 447, 133138.CrossRefGoogle Scholar
Emmerson, P. T. & West, S. C. (1977). Identification of protein X of E. coli as the rec A+/tif+ gene product. Molec. & Gen. Genet. 155, 7785.CrossRefGoogle Scholar
Fraval, H. N. A. & Roberts, J. J. (1978). Effects of cis-platinium (II) diamminedichloride on survival and the rate of DNA synthesis in synchronously growing Chinese hamster V79–379 A cells in the absence and presence of caffeine. Chem. Biol. Inter. 23, 99110.CrossRefGoogle Scholar
Fujiwara, Y. (1972). Characteristics of DNA synthesis following UV light irradiation in mouse L cells. Postreplication repair. Expl. Cell Res. 75, 483489.CrossRefGoogle ScholarPubMed
Fujiwara, Y. (1975). Postreplication repair of UV-damage to DNA. DNA chain elongation and effects of metabolic inhibitors in mouse L cells. Biophys. J. 15, 403415.CrossRefGoogle ScholarPubMed
Fujiwara, Y. & Kondo, T. (1974) Postreplication gap-filling repair in UV irradiated mouse L cells. In Sunlight and Man (ed. Fitzpatrick, T.), pp. 91102, University of Tokyo Press.Google Scholar
Fujiwara, Y. & Tatsumi, M. (1976). Replicative bypass repair of UV-damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat. Res. 37, 91110.CrossRefGoogle ScholarPubMed
Fujiwara, Y. & Tatsumi, M. (1977). Low levels of DNA exchanges in normal human and xeroderma pigmentosum cells after UV irradiation. Mutat. Res. 43, 279290.CrossRefGoogle ScholarPubMed
Ganesan, A. (1974). Persistence of pyrimidine dimers during post replication repair in UV light irradiated E. coli K 12. J. molec. Biol. 87, 103119.CrossRefGoogle Scholar
Ganesan, A. K. & Seawell, P. C. (1975). The effect of lex A and rec F mutations on post-replication repair and DNA synthesis in E. coli K-12. Molec. & Gen. Genet. 141, 189205.CrossRefGoogle Scholar
Gautshi, J. R., Young, B. R. & Cleaver, J. E. (1973). Repair of damaged DNA in the absence of protein synthesis in mammalian cells. Expl Cell Res. 76, 8794.CrossRefGoogle Scholar
Gudas, L. J. & Mount, D. W. (1977). Identification of the rec A (tif) gene product of E. coli. Proc. natn. Acad. Sci. U.S.A. 74, 52805284.CrossRefGoogle Scholar
Gudas, L. J. & Pardee, A. B. (1975). Model for regulation of E. coli DNA repair function. Proc. natn. Acad. Sci. U.S.A. 72, 23302334.CrossRefGoogle Scholar
Hanawalt, P. C., Cooper, P. K., Ganesan, A. K. & Smith, C. A. (1979). DNA repair in bacteria and mammalian cells. A. Rev. Biochem. 48, 783836.CrossRefGoogle ScholarPubMed
Haseltine, W. A., Gordon, L. K., Lindon, C. D., Grafstrom, R. H., Shaper, N. L. & Grossmann, L. (1980). Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature, Lond. 285, 634641.CrossRefGoogle ScholarPubMed
Higgins, N. P., Kato, K. & Strauss, B. (1976). A model for replication repair in mammalian cells. J. molec. Biol. 101, 417425.CrossRefGoogle Scholar
Hoffmann, M. E. & Meneghini, R. (1979). DNA strand breaks in mammalian cells exposed to light in the presence of ribofLavin and tryptophan. Photochem. & Photobiol. 29, 299303.CrossRefGoogle ScholarPubMed
Ikenaga, M. & Kakunaga, T. (1977). Excision of 4-nitroquinoline-I-oxide damage and transformation in mouse cells. Cancer Res. 37, 36723678.Google Scholar
Iyer, V. & Rupp, W. (1971). Usefulness of benzoylated naphthoylated DEAE cellulose to distinguish and fractionate double stranded DNA bearing different extents of single stranded regions. Biochim. biophys. Acta 228, 117126.CrossRefGoogle ScholarPubMed
Johnson, R. C. & McNeill, W. F. (1978). Electron Microscopy of UV-induced postreplication repair daughter strand gaps. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 9599. New York: Academic Press.CrossRefGoogle Scholar
Kakunaga, T. (1974). Requirement for cell replication in the fixation and expression of the transformed state in mouse cells treated with 4-nitro- quinoline-I-oxide. Int. J. Cancer 14, 736742.CrossRefGoogle Scholar
Kakunaga, T. (1978). Neoplastic transformation of human diploid fibroblasts cells by chemical carcinogens. Proc. natn. Acad. Sci. U.S.A. 75, 13341338.CrossRefGoogle ScholarPubMed
Kato, H. (1973 a). Induction of sister chromatid exchanges induced by UV irradiation, Nature, Lond. 249, 552553.CrossRefGoogle Scholar
Kato, H. (1973 b). Induction of sister chromatid exchanges by UV light and its inhibition by caffeine. Expi. Cell Res. 82, 383390.CrossRefGoogle ScholarPubMed
Kato, H. (1974 a). Photoreactivation of sister chromatid exchanges induced by UV-irradiation. Nature, Lond. 249, 552553.CrossRefGoogle Scholar
Kato, H. (1974 b). Possible role of DNA synthesis in formation of sister chromatid exchanges. Nature, Lond. 252, 739741.CrossRefGoogle ScholarPubMed
Kauffman, W. K., Cleaver, J. E. & Painter, R. B. (1980). UV radiation inhibits replicon initiation in S phase human cells. Biochim. biophys. Acta 608, 191195.CrossRefGoogle Scholar
Kinsella, A. R. & Radman, M. (1980). Inhibition of carcinogen-induced chromosomal aberrations by an anticarcinogenic protease inhibitor. Proc. natn. Acad. Sci. U.S.A. 77, 35443547.CrossRefGoogle ScholarPubMed
Klimek, M. & Vlasinova, M. (1966). Thymine and uracil-thymine dimers and DNA synthesis in mammalian cells. Int. J. Radiat. Biol. 11, 329337.Google ScholarPubMed
Kondo, S. (1973). Evidence that mutations are induced by errors in repair and replication. Genetics Suppl. 73, 109122.Google ScholarPubMed
Krishnan, D. & Painter, R. B. (1973). Photoreactivation and repair replication in rat kangaroo cells. Mutat. Res. 17, 213222.CrossRefGoogle ScholarPubMed
Latt, S. A. (1973). Microfluorimetric detection of DNA replication in human metaphase chromosomes. Proc. natn. Acad. Sci. U.S.A. 70, 33953399.CrossRefGoogle Scholar
Lavin, M. F. (1978). Postreplication repair in mammalian cells after UV irradiation. A model. Biophys. J. 23, 247256.CrossRefGoogle Scholar
Lehmann, A. R. (1972). Postreplication repair of DNA in UV-irradiated mammalian cells. J. molec. Biol. 66, 319337.CrossRefGoogle Scholar
Lehmann, A. R. (1976). Postreplication repair in mammalian cells: a discussion of the mechanisms and biological importance. In Radiation and Cellular Control Processes (ed. Kiefer, J.), pp. 147158, Berlin: Springer-Verlag.CrossRefGoogle Scholar
Lehmann, A. R. (1979). The relationship between pyrimidine dimers and replicating DNA in UV-irradiated human fibroblasts. Nucl. Acids Res. 7, 19011911.CrossRefGoogle ScholarPubMed
Lehmann, A. R. & Kirk-Bell, S. (1972). Postreplication repair of DNA in UV-irradiated mammalion cells. No gaps in DNA synthesized late after UV-irradiation. Eur. J. Biochem. 31, 438445.CrossRefGoogle Scholar
Lehmann, A. R. & Kirk-Bell, S. (1974.). Effect of caffeine and theophylline on DNA synthesis in unirradiated and UV-irradiated mammalian cells. Mutat. Res. 26, 7382.CrossRefGoogle ScholarPubMed
Lehmann, A. R. & Kirk-Bell, S. (1978). Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblsts. Photochem. & Photobiol. 27, 297307.CrossRefGoogle Scholar
Lehmann, A. R., Kirk-Bell, S., Arlett, C. F., Paterson, M. C., Lohmann, P. H. M., Weerd-Kastelein, E. A. & Bootsma, D. (1975). Xeroderma pigmentosum cells with normal levels of excision repair have a deffect in DNA synthesis after UV-irradiation. Proc. natn. Acad. Sci. U.S.A. 72, 219223.CrossRefGoogle Scholar
Lehmann, A. R., Kirk-Bell, S., Arlett, C. F., Harcourt, S. A., Kastelein, E. A., Keijzer, W. & Hall-Smith, P. (1977). Repair of UV damage in a variety of human fibroblasts cell strains. Cancer Res. 37, 904910.Google Scholar
Lehmann, A. R., Kirk-Bell, S. & Mayne, L. (1979). Abnormal kinetics of DNA synthesis in UV-light irradiated cells from patients with Cockayne's syndrome. Cancer Res. 39, 42374241.Google ScholarPubMed
Lehmann, A. R. & Stevens, S. (1975). Postreplication repair of DNA in chick cells: studies using photoreactivation. Biochim. biophys. Acta 402, 179187.CrossRefGoogle ScholarPubMed
Ley, R. D. (1973). Post replication repair in an excision-defective mutant of E. coli. UV light-induced incorporation of bromodeoxyuridine into parental DNA. Photochem. & Photobiol. 18, 8795.CrossRefGoogle Scholar
Little, J. W. & Kleid, D. G. (1977). E. coli Protein X is the Rec A gene product. J. biol. Chem. 252, 62516252.CrossRefGoogle Scholar
Littlefield, J. W. & Jacob, P. S. (1965). The relation between DNA and protein synthesis in mouse fibroblasts. Biochim. biophys. Acta 108, 652658.CrossRefGoogle ScholarPubMed
Lytle, C. D., Aaronson, S. A. & Harvey, E. (1972). Host cell reactivation in mammalian cells. II. Survival of herpes simplex virus and vaccinia virus in normal human and xeroderma pigmentosum cells. Int. J. Radiat. Biol. 22, 159165.CrossRefGoogle ScholarPubMed
Lytle, C. D., Day, R. S., Hellman, K. B. & Bockstahler, L. E. (1976). Infection of UV-irradiated normal human and XP fibroblasts by herpes simplex virus: studies on capacity and Weigle reactivation. Mutat. Res. 36, 257264.CrossRefGoogle ScholarPubMed
Lytle, C. D. & Goddard, J. G. (1979). UV-enhanced virus reactivation in mammalian cells: effects of metabolic inhibition. Photochem. & Photobiol. 29, 959962.CrossRefGoogle Scholar
Maher, V. M., Curren, R. D., Ouellette, L..M. & McCormick, J. J. (1976 a). Effect of DNA repair on the frequency of mutations induced in human cells by UV irradiation and by chemical carcinogens. In Fundamentals in Cancer Prevention (ed. Magee, P. N., Takayama, S. and Sugimura, T.), pp. 363382. University of Tokyo Press.Google Scholar
Maher, V. M., Dorney, D. J., Mendrala, A. L., Konze-Thomas, B. & McCormick, J. J. (1979). DNA excision repair processes in human cells eliminate the Cytotoxic and mutagenic consequences of UV irradiation. Mutat. Res. 62, 311323.CrossRefGoogle Scholar
Maher, V. M., Ouellete, L. M., Curren, R. D. & McCormick, J. J. (1976 b). Frequency of UV light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal human cells. Nature, Lond. 261, 593595.CrossRefGoogle Scholar
McEntee, K. (1977). Protein X is the product of the rec A gene of E. coli, Proc. natn. Acad. Sci. U.S.A. 74, 5255279.CrossRefGoogle Scholar
Meneghini, R. (1974). Repair replication of opossum lymphocyte DNA: effect of compounds that bind to DNA. Chem.-Biol. Inter. 8, 113126.CrossRefGoogle ScholarPubMed
Meneghini, R. (1976). Gaps in DNA synthesized by UV-light-irradiated WI38 cells. Biochim. biophys. Acta 425, 419427.CrossRefGoogle Scholar
Meneghini, R. (1981). Submitted for publication.Google Scholar
Meneghini, R., Cordeiro-Stone, M. & Schumacher, R. I. (1981). Size and frequency of gaps in newly synthesized DNA of xeroderma pigmentosum human cells irradiated with UV light. Biophys. J. 33, 8192.CrossRefGoogle Scholar
Meneghini, R. & Hanawalt, P. C. (1975). Postreplication repair in human cells: on the presence of gaps opposite dimers and recombination In Molecular Mechanisms for the Repair of DNA (ed. Hanawalt, P. C. and Setlow, R. B.), pp. 639642. New York: Plenum Press.CrossRefGoogle Scholar
Meneghini, R. & Hanawalt, P. C. (1976). T-4endonuclease sensitive sites in DNA from UV irradiated human cells. Biochim. biophys. Acta 425, 428434.CrossRefGoogle Scholar
Meneghini, R. & Menck, C. F. (1978). Pyrimidine dimers in DNA strands of mammalian cells synthesized after UV-irradition. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 493497. New York: Academic Press.CrossRefGoogle Scholar
Meyn, R. & Fletcher, S. (1978). The kinetics of postreplication repair in mammalian cells studied by the alkaline elution technique. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 513516. New York: Academic Press.CrossRefGoogle Scholar
Meyn, R., Kasschau, M. R. & Hewitt, R. (1977). The recovery of normal DNA replication kinetics in UV-irradiated Chinese hamster cells. Mutat. Res. 44, 129138.CrossRefGoogle Scholar
Meyn, R. E. & Humphrey, R. M. (1971). DNA synthesis in UV-light irradiated Chinese hamster cells. Biophys. J. 11, 295301.CrossRefGoogle ScholarPubMed
Meyn, R. E., Vizard, D. L., Hewitt, R. R. & Humphrey, R. M. (1974). The fate of pyrimidine dimers in the DNA of UV-irradiated Chinese hamster cells. Photochem. & Photobiol. 20, 221226.CrossRefGoogle Scholar
Milo, G. E. & DiPaolo, J. A. (1978). Neoplastic transformation of human diploid cells in vitro after chemical carcinogen treatment. Nature, Lond. 275, 130132.CrossRefGoogle ScholarPubMed
Miskin, R. & Reich, E. (1980). Plasminogen activation: induction of synthesis by DNA damage. Cell 19, 217224.CrossRefGoogle ScholarPubMed
Moore, P. D. & Holliday, R. (1976). Evidence for the formation of hybrid DNA during mitotic recombination in Chinese hamster cells. Cell 8, 573578.CrossRefGoogle ScholarPubMed
Moore, P. & Strauss, B. S. (1979). Sites of inhibition of in vitro DNA synthesis in carcinogen and UV-treated φ X-,74 DNA. Nature, Lond. 278, 664666.CrossRefGoogle Scholar
Moustacchi, E., Ehmann, U. K. & Friedberg, E. C. (1979). Defective recovery of semi-conservative DNA synthesis in XP cells following split dose UV-irradiation, Mutat. Res. 62, 159171.CrossRefGoogle Scholar
Myhr, B. C., Turnbull, D. & Dipaolo, J. A. (1979). UV mutagenesis of normal and xeroderma pigmentosum variant human fibroblast. Mutat. Res. 62, 341353.CrossRefGoogle Scholar
Nakano, S., Yamagami, H. & Takaki, R. (1979). Enhancement of excision- repair efficiency by conditioned medium from density-inhibited cultures in V-79 Chinese hamster cells: evidence for excision repair as an error- free repair process. Mutat. Res. 62, 369381.CrossRefGoogle Scholar
Natarajan, A. T., Van, zeeland A. A., Verdegaal-Immerzeel, P. A. M. & Filon, A. R. (1980). Influence of photoreactivation on biological effects induced by UV irradiation of eukaryotic cells. VIlIth Int. Congr. Photo- biology, Abstracts, p. 273.Google Scholar
Nocentini, S. (1976). Inhibition and recovery of ribosomal RNA synthesis in UV-irradiated mammalian cells. Biochim. biophys. Acta 454, 114128.CrossRefGoogle Scholar
Painter, R. B. (1974). DNA damage and repair in eukaryotic cells. Genetics 78, 139148.CrossRefGoogle ScholarPubMed
Painter, R. B. (1977). Inhibition of initiation of HeLa cell replicons by methyl methane sulfonate. Mutat. Res. 42, 299304.CrossRefGoogle Scholar
Painter, R. B. (1978). Does UV light enhance postreplication repair in mammalian cells. Nature, Lond. 275, 243245.CrossRefGoogle ScholarPubMed
Park, S. D. & Cleaver, I. E. (1979). Postreplication repair: questions of its definition and possible alterations in XP cells strains. Proc. natn. Acad. Sci. U.S.A. 76, 39273931.CrossRefGoogle Scholar
Paterson, M. C. (1978). Ataxia telangiectasia: a model inhibited disease linking deficient DNA repair with radiosensitivity and cancer proneness. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 637650. New York: Academic Press.CrossRefGoogle Scholar
Perry, P. & Evans, H. J. (1975). Cytological detections of mutagen-carcinogen exposure by sister chromatic exchange. Nature, Lond. 258, 121125.CrossRefGoogle Scholar
Povirk, L. F. & Painter, R. B. (1976). Rate of DNA chain elongation in UV-light-irradiated mammalian cells as estimated by a bromodeoxyuridine photolysis method. Biophys. J. 16, 883889.CrossRefGoogle Scholar
Powell, W. F. (1962). The effects of UV irradiation and inhibitors of protein synthesis on the initiation of DNA synthesis in mammalian cells in culture. Biochim. biophys. Acta 55, 969978.CrossRefGoogle Scholar
Rasmussen, R. E. & Painter, R. B. (1964). Evidence for repair of UV damaged DNA in cultured mammalian cells. Nature, Lond. 203, 13601362.CrossRefGoogle Scholar
Rauth, A. M. (1967). Evidence for dark-reactivation of UV light damage in mouse L cells. Radiat. Res. 31, 121138.CrossRefGoogle ScholarPubMed
Rauth, A. M., Rammemagi, M. & Hunter, G. (1974). Nascent DNA synthesis in UV light-irradiated mouse, human and Chinese hamster cells. Biophys, J. 14, 209220.CrossRefGoogle Scholar
Roberts, J. J., Sturrock, J. E. & Ward, K. N. (1974). The enhancement by caffeine of alkylation-induced cell death, mutations and chromosomal aberrations in Chinese hamster cells, as a result of inhibition of post- replication DNA repair. Mutat. Res. 26, 129143.CrossRefGoogle ScholarPubMed
Roberts, J. J. & Ward, K. N. (1973). Inhibition of post replication repair of alkylated DNA by caffeine in Chinese hamster cells but not HeLa cells. Chem.-Biol. Inter. 7, 241264.CrossRefGoogle Scholar
Rommelaere, J. & Miller-Faurés, A. (1975). Detection by density equilibrium centrifugation of recombinant like DNA molecules in somatic mammalian cells. J. molec. Biol. 98, 195218.CrossRefGoogle ScholarPubMed
Rosenstein, B. S. & Setlow, R. (1980). DNA repair after UV irradiation of ICR 2A frog cells: pyrimidine dimers are long acting blocks to nascent DNA synthesis. Biophys. J. 31, 195205.CrossRefGoogle ScholarPubMed
Rupp, W. D. & Howard-Flanders, P. (1968). Descontinuities in the DNA synthesized in an excision-defective strain of E. coli following UV-irradiation. J. molec. Biol. 31, 291304.CrossRefGoogle Scholar
Rupp, W. D., Wilde, C. E. III, Reno, D. L. & Howard-Flanders, P. (1971). Exchanges between DNA strands in UV-irradiated E. coli. J. molec. Biol. 61, 2544.CrossRefGoogle Scholar
Sarasin, A. & Benoit, A. (1980). Induction of an error-prone mode of DNA repair in UV-irradiated monkey kidney cells. Mutat. Res. 70, 7181.CrossRefGoogle ScholarPubMed
Sarasin, A. R. & Hanawalt, P. C. (1978). Carcinogens enhance survival of UV-irradiated simian virus 40 in treated monkey kidney cells: induction of a recovery pathway. Proc. natn. Acad. Sci. U.S.A. 75, 346350.CrossRefGoogle ScholarPubMed
Sedgwick, S. G. (1975). Inducible error-prone repair in E. coli. Proc. natn. Acad. Sci. U.S.A. 72, 27532757.CrossRefGoogle Scholar
Setlow, R. B. & Hart, R. W. (1975). Direct evidence that damaged DNA results in neoplastic transformation – a fish story. In Proc. 5th mt. Congr. Radiation Research (ed. Nyggard, O. F., Adler, H. I. and Sinclair, W. K.), pp. 879884. New York: Academic Press.CrossRefGoogle Scholar
Setlow, R. B. (1976). Repair deficient human disorders and cancer. Nature, Lond. 271, 713717.CrossRefGoogle Scholar
Shibata, T., Cunningham, R. P., Das, Gupta C. & Radding, C. (1979). Homologous pairing in genetic recombination: complexes of rec A protein and DNA. Proc. natn. Acad. Sci. U.S.A. 76, 51005104.CrossRefGoogle Scholar
Simon, J. W. I. M. (1979). Development of a liquid-holding technique for the study of DNA-Repair in human diploid fibroblasts. Mutat. Res. 59, 273283.CrossRefGoogle Scholar
Smith, K. C. & Meun, D. H. C. (1970). Repair of radiation-induced damage in E. coli. I. Effect of rec mutations on post-replication repair of damage due to UV radiation. J. molec. Biol. 51, 459472.CrossRefGoogle Scholar
Strauss, R. S. (1979). The interaction of metabolic systems with damaged DNA. Jap. J. Genet. 54, 489512.CrossRefGoogle Scholar
Sutherland, B. M., Delihas, N. C. & Sutherland, J. C. (1980). UV transformation of human cells to anchorage independent growth: Action spectrum. VIIIth Int. Congr. Photobiologie, Abstract, p. 283.Google Scholar
Tatsumi, K. & Strauss, B. (1978). Production of DNA bifilarly substituted with bromodeoxyuridine in the first round of synthesis:branch migration during isolation of cellular DNA. Nucl. Acids Res. 5, 331347.CrossRefGoogle ScholarPubMed
Tatsumi, K. & Strauss, B. S. (1979). Accumulation of DNA growing points in caffeine treated human lymphoblastoid cells. J. molec. Biol. 135, 435449.CrossRefGoogle ScholarPubMed
Taylor, J. H. (1959). The organization and duplication of genetic material. Proc. Ioth. Int. Congr. Genet., Montreal, 1, 6378.Google Scholar
Todd, P. (1973). Fractionated UV light irradiation of cultured Chinese hamster cells. Radiat. Res. 55, 93100.CrossRefGoogle ScholarPubMed
Tsang, Lee M. Y. W., Tan, C., So , A. G. & Downey, K. M. (1980). Purification of DNA polymerase δ from calf thymus: partial characterization of physical properties. Biochemistry, N.Y. 19, 20962101.Google Scholar
Vanícek, J. & Klímek, M. (1971). A mathematical model of the course of the DNA synthesis in mammalian cells after UV irradiation and its use in the determination of the length of the replicon. Curr. Mod. Biol. 3, 347352.Google Scholar
Villani, G., Boiteux, S. & Radman, M. (1978). Mechanism of UV-induced mutagenesis: Extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. natn. Acad. Sci. U.S.A. 75, 30373041.CrossRefGoogle Scholar
Walicka, M., Korner, I., Malz, W. & Beer, J. Z. (1978). The effect of caffeine on postreplication repair and survival in two L5178Y cell lines with different sensitivities to UV-irradiation. Mutat. Res. 52, 265272.CrossRefGoogle ScholarPubMed
Walker, I. G. & Reid, B. D. (1971). Caffeine potentiation of the lethal action of alkylating agents on L cells. Mutat. Res. 12, 101104.CrossRefGoogle ScholarPubMed
Waters, R. (1979). Repair of DNA in replicated and unreplicated portions of the human genome. J. molec. Biol. 127, 117127.CrossRefGoogle ScholarPubMed
Waters, R. & Regan, J. D. (1976). Recombination of UV induced pyrimidine dimers in human fibroblasts. Biochem. biophys. Res. Commun. 72, 803807.CrossRefGoogle ScholarPubMed
Weigle, J. J. (1979). Induction of mutations in a bacterial virus. Proc. natn. Acad. Sci. U.S.A. 39, 628636.CrossRefGoogle Scholar
Weinstock, G. M., Mcentee, K. & Lehman, I. R. (1979). ATP-dependent renaturation of DNA catalysed by therec A protein of E. coli. Proc. natn. Acad. Sci. U.S.A. 76, 126130.CrossRefGoogle Scholar
Witkin, E. (1976). UV mutagenesis and inducible DNA repair in E. coli. Bact. Rev. 40, 869907.Google Scholar
Wolff, S., Bodycote, J. & Painter, R. B. (1974). Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: the necessity for cells to pass through. S Mutat. Res. 25, 7381.CrossRefGoogle ScholarPubMed
Wolff, S. (1978). Relation between DNA repair, chromosome aberrations, and sister chromatid exchanges. In DNA Repair Mechanisms (ed. Hanawalt, P. C., Friedberg, E. C. and Fox, C. F.), pp. 751760. New York: Academic Press.CrossRefGoogle Scholar
Youngs, D. A. & Smith, K. C. (1973). Evidence for the control by exr A and pol A genes of two branches of the uvr gene-dependent excition repair pathway in. E coil K-iz. J. Bact. 116, 175182.Google Scholar
Youngs, D. A., Van, der Schueren E. & Smith, C. S. (1975). Involvement of uvr D, exr A and rec B genes in the control of the postreplicational repair process. In Molecular Mechanisms for Repair of DNA (ed. Hanawalt, P. C. and Setlow, R. B.), pp. 331335. New York: Academic Press.CrossRefGoogle Scholar
Zimm, B. H. (1974). Anomalies in sedimentation. IV. Decrease in sedimentation coefficients of chains at high fields. Biophys. Chem. I, 279291.Google Scholar