Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T08:11:38.685Z Has data issue: false hasContentIssue false

Magnetic field effects on photosynthetic reactions

Published online by Cambridge University Press:  17 March 2009

A. J. Hoff
Affiliation:
Department of Biophysics, Huygens Laboratory of the State University, Leiden, The Netherlands

Extract

When light impinges on photosynthetic material – a plant leaf, an alga or a photosynthetic bacterium – it is absorbed by an array of lightcollecting pigments. Through resonant energy transfer the absorbed quantum of light is transported to a trap, the reaction centre. Within such a trap, a specialized (bacterio)chlorophyll complex is able to eject from its excited state an electron. This electron is ‘captured’ by an adjacent acceptor, which in turn donates the electron to a second acceptor, and so on. Thus, light energy is converted into chemical energy which is ultimately used in the metabolic processes of the cell.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, F. J. (1977). Radical pair mechanism of chemically induced magnetic polarization. In Chemically Induced Magnetic Polarization (ed. Muus, L. T., Atkins, P. W., McLauchlan, K. A. and Pedersen, J. B.), pp. 77105. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Baltimore, B. D. & Malkin, R. (1980). Spectral characterization of the intermediate electron acceptor (A1) of photosystem I. FEBS Lett. 110, 5052.Google Scholar
Barber, J. (1977). Primary Processes in Photosynthesis. Amsterdam: Elsevier / North-Holland Biomedical Press.Google Scholar
Bargon, J., Fischer, H. & Johnsen, U. (1967). Kernresonanz-Emissionslinien während rascher Radikal–Reaktionen. I. Aufnahmeverfahren und Beispiele. Z. Naturf. 22a, 15511555.CrossRefGoogle Scholar
Blankenship, R. E., Schaafsma, T. J. & Parson, W. W. (1977). Magnetic field effects on radical pair intermediates in bacterial photosynthesis. Biochim. biophys. Acta 461, 297305.Google Scholar
Brocklehurst, B. (1976). Spin correlation in the geminate recombination of radical ions in hydrocarbons. I. Theory of the magnetic field effect. J. chem. Soc. Faraday Trans. II 72, 18691884.Google Scholar
Brocklehurst, B., Dixon, R. S., Gardy, E. M., Lopata, V. J., Quinn, M. J., Singh, A. & Sargent, F. P. (1974). The effect of a magnetic field on the singlet/triplet ratio in geminate ion recombination. Chem. Phys. Lett. 28, 361363.Google Scholar
Buhks, E. & Jortner, J. (1980). Activationless electron transfer processes in biological systems. FEBS Lett. 109, 117120.Google Scholar
Chidsey, C. E. D., Roelofs, M. G. & Boxer, S. G. (1980). The effect of large magnetic fields and the gfactor difference on the triplet population in photosynthetic reaction centers. Chem. Phys. Lett. 74, 113118.CrossRefGoogle Scholar
Clayton, R. K. & Sistrom, W. R. (eds.) (1978). The Photosynthetic Bacteria. New York: Plenum Press.Google Scholar
Closs, G. L. (1969). A mechanism explaining nuclear spin polarization in radical recombination reactions. J. Am. chem. Soc. 91, 45524554.CrossRefGoogle Scholar
Davis, M. S., Forman, A. & Fajer, J. (1979). Ligated chlorophyll cation radicals: Their function in photosystem II of plant photosynthesis. Proc. natn. Acad. Sci. U.S.A. 76, 41704174.Google Scholar
Devault, D. (1980). Quantum mechanical tunnelling in biological systems. Q. Rev. Biophys. 13, 387564.Google Scholar
Fessenden, R. W. & Schuler, R. H. (1963). Electron spin resonance studies of transient alkyl radicals. J. chem. Phys. 39, 21472159.Google Scholar
Frank, H. A., McLean, M. B. & Sauer, K. (1979). Triplet states in photo- system i of spinach chioroplasts and subchloroplast particles. Proc. natn. Acad. Sci. U.S.A. 76, 51245128.Google Scholar
Geacintov, N. E., Van, Nostrand F., Pope, M. & Tinkel, J. B. (1971). Magnetic field effect on the chlorophyll fluorescence in Chlorella. Biochim. biophys. Acta 226, 486491.CrossRefGoogle ScholarPubMed
Gast, P. & Hoff, A. J. (1979). Transfer of light-induced electron-spin polarization from the intermediary acceptor to the prereduced primary acceptor in the reaction center of photosynthetic bacteria. Biochim. biophys. Acta 548, 520535.Google Scholar
Godik, V. I. & Borisov, A. Yu. (1979). Short-lived delayed luminescence of photosynthetic organisms. I. Nanosecond afterglows in purple bacteria at low redox potentials. Biochim. biophys. Acta 548, 296308.Google Scholar
Godik, V. I. & Borisov, A. Yu. (1980). Short-lived delayed luminescence of photosynthetic organisms. II. The ratio between delayed and prompt fluorescence as studied by the modulation method. Biochim. biophys. Acta 590, 182193.Google Scholar
Haberkorn, R. (1977 a). Theory of magnetic field modulation of radical recombination reactions I. Chem. Phys. 19, 165179.Google Scholar
Haberkorn, R. (1977 b). Theory of magnetic field modulation of radical recombination reactions. II. Short time behaviour. Chem. Phys. 24, 111117.Google Scholar
Haberkorn, R. & Michel-Beyerle, M. E. (1979). On the mechanism of magnetic field effects in bacterial photosynthesis. Biophys. J. 26, 489498.Google Scholar
Haberkorn, R., Michel-Beyerle, M. E. & Marcus, R. A. (1979). On spin-exchange and electron-transfer rates in bacterial photosynthesis. Proc. natn. Acad. Sci. U.S.A. 76, 41854188.CrossRefGoogle ScholarPubMed
Heathcote, P., Timofeev, K. N. & Evans, M. C. W. (1979). Detection by EPR spectroscopy of a new intermediate in the primary photochemistry of photosystem i particles isolated using Triton X-100. FEBS Lett. 101, 105109.Google Scholar
Hoff, A. J. & Gast, P. (1979). Transfer of light-induced electron spin polarization in bacterial photosynthetic reaction centers. J. Phys. Chem. 83, 33553358.Google Scholar
Hoff, A. J. & Rademaker, H. (1977). Light-induced magnetic polarization in photosynthesis. In Chemically Induced Magnetic Polarization (ed. Muus, L. T., Atkins, P. W., McLauchlan, K. A. and Pedersen, J. B.), pp. 399404. Dordrecht: D. Reidel.Google Scholar
Hoff, A. J., Rademaker, H., Van, Grondelle R. & Duysens, L. N. M. (1977). On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochim. biophys. Acta 460, 547554.Google Scholar
Hopfield, J. (1974). Electron transfer between biological molecules by thermally activated tunneling. Proc. natn. Acad. Sci. U.S.A. 71, 36403644.CrossRefGoogle ScholarPubMed
Jortner, J. (1980). Dynamics of the primary events in bacterial photosynthesis. J. Am. chem. Soc. 102, 66766686.Google Scholar
Junge, W. (1981). Electrogenic reactions and proton pumping in green plant photosynthesis. In Electrogenic Ion Pumps (ed. Slayman, C.).Google Scholar
Current Topics in Membranes and Transport (ed. Bronner, & Kleinzeller, ). (In the Press.)Google Scholar
Kaptein, R. (1975). Chemically induced dynamic nuclear polarization: Theory and applications in mechanistic chemistry. In Adv. Free-Radical Chemistry, vol. (ed. Williams, G. H.), pp. 319380. London: Elek Science.Google Scholar
Kaptein, R. & Oosterhoff, L. J. (1969). Chemically induced dynamic nuclear polarization II. (Relation with anomalous ESR spectra). Chem. Phys. Lett. 4, 195197.Google Scholar
Kip, A. P., Kittel, C., Levy, R. A. & Portis, A. M.Electronic structure of F centers: Hyperfine interactions in electron spin resonance. Phys. Rev. 91, 10661071.Google Scholar
Klevanik, A. V., Shuvalov, V. A. & Goryushkin, G. E. (1979). Sostoyanye feofitina i vliyanye magnitnovo polya na vikhod lyuminetsentsii Chromatium vinosum i fotosistemi 2 zelyenikh rastenii. Dokl. Akad. Nauk. SSSR 249, 12381241.Google Scholar
Klimov, V. V., Ke, B. & Dolan, E. (1980). Effect of photoreduction of the photosystem II intermediary electron acceptor (pheophytin) on triplet state of carotenoids. FEBS Lett. 118, 123126.Google Scholar
Klimov, V. V., Klevanik, A., Shuvalov, V. A. & Krasnovsicy, A. A. (1977). Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett. 82, 183186.Google Scholar
Kubo, R. (1969). A stochastic theory of lineshape. Adv. chem. Phys. 15, 101127.Google Scholar
Michel-Beyerle, M. E., Scheer, H., Seidlitz, H. & Tempus, D. (1980). Magnetic field effect on triplets and radical ions in reaction centers of photosynthetic bacteria. FEBS Lett. 110, 129132.Google Scholar
Michel-Beyerle, M. E., Scheer, H., Seidlitz, H., Tempus, D. & Haberkorn, R. E. (1979). Time-resolved magnetic field effect on triplet formation in photosynthetic reaction centers of Rhodopseudomonas sphaeroides R-26. FEBS Lett. 100, 912.Google Scholar
Michel-Beyerle, M. E., Haberkorn, R., Bube, W., Steffens, E., Schroeder, H., Neusser, H. J., Schlag, E. W. & Seidlitz, H. (1976). Magnetic field modulation of geminate recombination of radical ions in a polar solvent. Chem. Phys. 17, 139145.CrossRefGoogle Scholar
Muus, L. T., Atkins, P. W., McLauchlan, K. A. & Pedersen, J. B. (eds). (1977). Chemically Induced Magnetic Polarization. Dordrecht: D. Reidel.Google Scholar
Ogrodnik, A., Krueger, H. W., Orthuber, H., Haberkorn, R. & Michelbeyerle, M. (1981). Recombination dynamics in reaction centers of photosynthetic bacteria. Biophys. J. (In the Press.)Google Scholar
Okamura, M. Y., Isaacson, R. A. & Feher, G. (1979). Spectroscopic and kinetic properties of the transient intermediate acceptor in reaction centers of Rhodopseudomonas sphaeroides. Biochim. biophys. Acta 547, 394417.CrossRefGoogle Scholar
Olson, J. M. & Thornber, J. P. (1979). Photosynthetic reaction centers. In Membrane Proteins in Energy Transduction (ed. Capaldi, R. A.), pp. 279340. New York: Marcel Dekker.Google Scholar
Parson, W. W. (1978). Quinones as secondary electron acceptors. In The Photosynthetic Bacteria (ed. Clayton, R. K. and Sistrom, W. R.), pp. 455469. New York: Plenum.Google Scholar
Parson, W. W. & Monger, T. G. (1976). Interrelationships among excited states in bacterial reaction centers. Brookhaven Symp. Biol. 28, 195211.Google Scholar
Pedersen, J. B. (1978). High field CIDNP. General analytic results. J. chem. Phys. 67, 40974102.CrossRefGoogle Scholar
Pedersen, J. B. (1979). Theories of Chemically Induced Magnetic Polarization. Odense: Odense University Press.Google Scholar
Rademaker, H. (1980). Magnetic field effects on primary and associated reaction of bacterial photosynthesis. Thesis, University of Leiden.Google Scholar
Rademaker, H. & Hoff, A. J. (1981). The balance between primary forward and back reactions in bacterial photosynthesis. Biophys. J. 34, 325344.Google Scholar
Rademaker, H., Hoff, A. J. & Duysens, L. N. M. (1979). Magnetic fieldinduced increase of the yield of (bacterio) chlorophyll emission of some photosynthetic bacteria and of Chlorella vulgaris. Biochim. Biophys. Acta 546, 248255.Google Scholar
Rademaker, H., Hoff, A. J., Van, Grondelle R. & Duysens, L. N. M. (1980). Carotenoid triplet yields in normal and deuterated Rhodosprillum rubrum. Biochim. biophys. Acta 592, 240257.Google Scholar
Rutherford, A. W., Paterson, D. R. & Mullet, J. E. (1981). A lightinduced spin-polarized triplet detected by EPR in photosystem II reaction centers. Biochim. biophys. Acta 635, 205214.CrossRefGoogle ScholarPubMed
Roth, H. D. (1977). Chemically induced nuclear spin polarization in photo- initiated radical ion reactions. In Chemically Induced Magnetic Polarization (ed. Muus, L. T., Atkins, P. W., McLauchlan, K. A. and Pedersen, J. B.), pp. 3976. Dordrecht: D. Reidel.CrossRefGoogle Scholar
Schenck, G. C., Blankenship, R. & Parson, W. W. (1982). Radical-pair decay kinetics, triplet yields, and delayed fluorescence from bacterial reaction centers. Biochim. biophys. Acta. (In the Press.)Google Scholar
Schulten, K., Staerk, H., Weller, A., Werner, H.-J. & Nickel, B. (1976). Magnetic field dependence of geminate recombination of radical ion pairs in polar solvents. Z. phys. Chem. N.F. 101, 371390.Google Scholar
Shuvalov, V. A. & Parson, W. W. (1981). Energies and kinetics of radical pairs involving bacteriochiorophyll and bacteriopheophytin in bacterial reaction centers. Proc. natn. Acad. Sci. U.S.A. 78, 957961.Google Scholar
Shuvalov, V. A., Dolan, E. & Ke, B. (1979 a). Spectral and kinetic evidence for two early electron acceptors in photosystem I. Proc. natn. Acad. Sci. U.S.A. 76, 770773.Google Scholar
Shuvalov, V. A., Ke, B. & Dolan, E. (1979 b). Kinetic and spectral properties of the intermediary electron acceptor A1 in photosystem I. FEBS Lett. 100, 58.Google Scholar
Shuvalov, V. A., Klevanik, A. V., Sharkov, A. V., Kryukov, P. G. & Ke, B. (1979 c). Picosecond spectroscopy of photosystem I reaction centers. FEBS Lett. 107, 313316.Google Scholar
Shuvalov, V. A., Klimov, V. V., Dolan, E., Parson, W. W. & Ke, B. (1980). Nanosecond fluorescence and absorbance changes in photosystem II at low redox potential. Pheophytin as an intermediary electron acceptor. FEBS Lett. 118, 279282.Google Scholar
Sonneveld, A. (1981). Primary photochemistry and energy transfer in photosystem I and II of photosynthesis. Thesis, University of Leiden.Google Scholar
Sonneveld, A., Duysens, L. N. M. & Moerdijk, A. (1980). Magnetic field- induced increase of chlorophyll a delayed fluorescence of photosystem II: A 100- to 200-ns component between 4·2 and 300 K. Proc. natn. Acad. Sci. U.S.A. 77, 58895893.Google Scholar
Sonneveld, A., Duysens, L. N. M. & Moerdijk, A. (1981 a). Magnetic fieldinduced increase of sub-microsecond chlorophyll a delayed fluorescence of photosystem II down to 4·2 K. Evidence for an intermediary acceptor between the primary donor P-680 and acceptor Q. In Proc. 5th mt. Congr. Photosynthesis (ed. Akoyunoglou, G.). Jerusalem: Tnt. Science Services. (In the Press.)Google Scholar
Sonneveld, A., Duysens, L. N. M. & Moedijk, A. (1981 b). Sub-microsecond chlorophyll a delayed fluorescence from photosystem. I. Magnetic field- induced increase of the emission yield. Biochim. biophys. Acta. 636, 3949.CrossRefGoogle ScholarPubMed
Swenberg, C. E. & Geacintov, N. E. (1973). Exciton interactions in organic solids. In Organic Molecular Photophysics, vol. I (ed. Birks, J. B.), pp. 489564. London: Wiley.Google Scholar
Trebst, A. & Avron, M. (eds.) (1977). Photosynthesis I. Encyclopedia of Plant Physiology, vol. 5. New Series. New York: Springer-Verlag.Google Scholar
Van Bochove, A. C., Van, Grondelle R. & Duysens, L. N. M. (1981). Nanosecond recombination luminescence of bacteriochiorophyll in chromatophores of various photosynthetic purple bacteria. In Proc. 5th Int. Congr. Photosynthesis (ed. Akoyunoglou, G.). Jerusalem: International Science Services. (In the Press.)Google Scholar
VanGrondelle, R., Duysens, L. N. M., Van Der Wel, J. A. & Van Der Wal, H. N. (1977). Function and properties of a soluble ctype cytochrome c551 in secondary photosynthetic electron transport in whole cells of Chromatium vinosum as studied with flash spectroscopy. Biochim. biophys. Acta 461, 188201.Google Scholar
Voznyak, V. M., Elfimov, E. I. & Proskuryakov, I. I. (1978). Vliyanye magnitnovo polya na rekombinatsionnuyu fluorestsentsiyu ryada fotosinteziruyushtsikh bacterii. Doki. Akad. Nauk. SSSR 242, 12001204.Google Scholar
Voznyak, V. M., Elfimov, E. I. & Sukovatitzina, V. K. (1980 a). Magnetic field affects the fluorescence yield in reaction center preparations from Rhodopseudomonas sphaeroides R-26. Biochim. biophys. Acta 592, 235239.Google Scholar
Voznyak, V. M., Ganago, I. B., Moskalenko, A. A. & Elfimov, E. I. (1979). Vliyanye magnitnovo polya na vikhod fluorestsentsii khlorofillbelkovikh kompleksov, obogashtsennikh fotosystemoi I. Stud. Biophysica 77, 1320.Google Scholar
Voznyak, V. M., Ganago, I. B., Moskalenko, A. A. & Elfimov, E. I. (1980 b). Magnetic field-induced fluorescence changes in chlorophyll- proteins enriched with P700. Biochim. biophys. Acta 592, 364368.CrossRefGoogle ScholarPubMed
Werner, H.-J., Schulten, Z. & Schulten, K. (1977). Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents. J. chem. Phys. 67, 646663.Google Scholar
Werner, H.-J., Schulten, K. & Weller, A. (1978). Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosynthesis. Biochim. biophys. Acta 502, 255268.Google Scholar
De, Vries H. G. & Hoff, A. J. (1978). Magnetic field effect on the fluorescence intensity of Rhodopseudomonas spharoides at i·4 K. Chem. Phys. Lett. 55, 395398.Google Scholar
Norris, J. R., Bowman, M. K., Closs, G. L. & Budil, D. E. (1981). Private communication.Google Scholar
Proskuryakov, I. I., Elfimov, E. I. & Voznyak, V. M. (1981). Magnetic field-induced changes of fluorescence yield of Rhodopseudomonas sphaeroides at 5 K. Does the Vrendenberg-Duysens relationship hold for reaction centres closed by the formation of a triplet state? Studia Biophysica 84, 125132.Google Scholar
Triebel, M. M., Frankevich, E. L. & Kolesnikova, N. I. (1981). Magnetic field effects in primary processes of photosynthesis. Conference on Chemically Induced Spin Polarization and Magnetic Field Effects in Chemical Reactions, Novosibirsk, USSR.Google Scholar
Voznyak, V. M., Elfimov, E. I. & Proskuryakov, I. I. (1981). Magnetic field effects on the primary processes of photosynthesis. Conference on Chemically Induced Spin Polarization and Magnetic Field Effects in Chemical Reactions, Novosibirsk, USSR.Google Scholar