Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T18:07:49.299Z Has data issue: false hasContentIssue false

Luminescence spectroscopic approaches in studying cell surface dynamics

Published online by Cambridge University Press:  17 March 2009

Janos Matkó
Affiliation:
Department of Biophysics, Medical University of Debrecen, H-4012 Debrecen, POB 3, Hungary
Janos Szöllösi
Affiliation:
Department of Biophysics, Medical University of Debrecen, H-4012 Debrecen, POB 3, Hungary
Lajos Trón
Affiliation:
Department of Biophysics, Medical University of Debrecen, H-4012 Debrecen, POB 3, Hungary
Sandor Damjanovich
Affiliation:
Department of Biophysics, Medical University of Debrecen, H-4012 Debrecen, POB 3, Hungary

Extract

The major elements of membranes, such as proteins, lipids and polysaccharides, are in dynamic interaction with each other (Alberts et al. 1983). Protein diffusion in the lipid matrix of the membrane, the lipid diffusion and dynamic domain formation below and above their transition temperature from gel to fluid state, have many functional implications. This type of behaviour of membranes is often summarized in one frequently used word membrane fluidity (coined by Shinitzky & Henkart, 1979). The dynamic behaviour of the cell membrane includes rotational, translational and segmental movements of membrane elements (or their domain-like associations) in the plane of, and perpendicular to the membrane. The ever changing proximity relationships form a dynamic pattern of lipids, proteins and saccharide moieties and are usually described as ‘cell-surface dynamics’ (Damjanovich et al. 1981). The knowledge about the above defined behaviour originates from experiments performed mostly on cytoplasmic membranes of eukaryotic cells. Nevertheless numerous data are available also on the mitochondrial and nuclear membranes, as well as endo (sarco-)plasmic reticulum (Martonosi, 1982; Slater, 1981; Siekevitz, 1981).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1983). Molecular Biology of the Cell, pp. 255256. London: Garland.Google Scholar
Amar, A., Rottem, S. & Razin, S. (1978). Disposition of membrane proteins as affected by changes in the electrochemical gradient across mycoplasma membranes. Biochem. biophys. Res. Commun. 84, 306312.Google Scholar
Ameloot, M., Hendrickx, H., Herreman, W., Pottel, H., Cauwelaert, F. & Van Der Meer, W. (1984). Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions. Biophys. J. 46, 525539.Google Scholar
Anderson, R. G. W. W., Brown, M. S. & Goldstein, J. L. (1977). Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblast. Cell 10, 351364.Google Scholar
Anichini, A., Ress, S., Strassman, G. & Bach, F. H. (1985). Inhibition of anti-class I cytotoxicity by anti-class II monoclonal antibodies (MoAb). II. Blocking of anti-class I CTL clones by anti-DR MoAb. Hum. Immun. 13, 139144.Google Scholar
Axelrod, D. (1983). Lateral motion of membrane proteins and biological function. J. membrane Biol. 75, 110.Google Scholar
Axelrod, D. (1985). Fluorescence photobleaching techniques and lateral diffusion. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bayley, P. M. & Dale, R. E.), pp. 163176. London: Academic Press.Google Scholar
Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. y. 16, 10551069.Google Scholar
Balazs, M., Matko, J., Szöllösi, J., Matyus, L., Fulwyler, M. J. & Damjanovich, S. (1986). Accessibility of cell surface thiols in human lymphocytes is altered by ionophores or OKT3 antibody. Biochem. biophys. Res. Commun 140, 9991006.Google Scholar
Barbara, P. F., Rentzepis, P. M. & Brus, L. E. (1980). Photochemical kinetics of salicylidenaniline. y. Am. chem. Soc. 102 (8), 27862791.Google Scholar
Barnett, R. E., Furcht, L. T. & Scott, R. E. (1974). Differences in membrane fluidity and structure of contact-inhibited and transformed cells. Proc. natn. acad. Sci. U.S.A. 71, 19921994.CrossRefGoogle ScholarPubMed
Bartholdi, M., Barrantes, F. J. & Jovin, T. M. (1981). Rotational molecular dynamics of the membrane-bound acethylcholine receptor revealed by phosphorescence spectroscopy. Eur. y. Biochem. 120, 389397.Google Scholar
Beck, K. & Peters, R. (1985). Translational diffusion and phase separation in phospholipid monolayers: a fluorescence microphotolysis study. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bayley, P. M. & Dale, R. E.), pp. 177197. London: Academic Press.Google Scholar
Beece, D., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M. C., Reinisch, L., Reynolds, A. H., Sorensen, L. B. & Yue, K. T. (1980). Solvent viscosity and protein dynamics. Biochemistry, N.Y. 19, 51475157.Google Scholar
Berridge, M. J. & Irvine, R. F. (1984). Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature, Land. 312, 315321.Google Scholar
Blatt, E. & Jovin, T. M. (1986). Rotational dynamics of biological macromolecules. In Photophysical and Photochemical Tools in Polymer Science (ed. Winnik, E. A.), pp. 351370. Dordrecht: Reidel.Google Scholar
Blatt, E. & Sawyer, W. H. (1985). Depth-dependent fluorescence quenching in micelles and membranes. Biochim. biophys. Acta 822, 4362.Google Scholar
Blumenthal, R., Klausner, R. D. & Weinstein, J. N. (1980). Voltage-dependent translocation of the asialoglycoprotein receptor across lipid membranes. Nature, Lond. 288, 333338.CrossRefGoogle ScholarPubMed
Boonstra, J., Nelemans, S., Feijen, A., Bierman, A., Van Zoelen, E. J. J.., Van Der Saag, P. T. & Delaat, S. W. (1982). Effect of fatty acids on plasma membrane lipid dynamics and cation permeability in neuroblastoma cells. Biochim. biophys. Acta 692, 321329.Google Scholar
Borochov, H. & Shinitzky, M. (1976). Vertical displacement of membrane proteins mediated by changes in microviscosity. Proc. natn. Acad. Sci. U.S.A. 73, 45264530.Google Scholar
Boyse, E. A., OLD, L. J. & Stochert, E. (1968). An approach to the mapping of antigens on the cell surface. Genetics 60, 886893.Google Scholar
Brand, M. D. & Felber, S. M. (1984). Membrane potential of mitochondria in intact lymphocytes during early mitogenic stimulation. Biochem. J. 217, 453459.Google Scholar
Brauer, T., Hulser, D. F. & Strasser, R. J. (1984). Comparative measurements of membrane potentials with microelectrodes and voltage sensitive dyes. Biochim. biophys. Acta 771, 208216.Google Scholar
Bretscher, M. S. (1973). Membrane structure: Some general principles. Science, N. Y. 181, 622629.Google Scholar
Bretscher, M. S. (1976). Directed lipid flow in cell membranes. Nature, Lond. 260, 2122.Google Scholar
Bright, S. & Munro, A. J. (1981). Studies on the role of HLA-DR in macrophage-T cell interactions. Tissue Antigens 18, 217231.Google Scholar
Brodsky, F. M. (1984). A matrix approach to human class II histocompatibility antigens: reactions of four monoclonal antibodies with the products of nine haplotypes. Immunogenetics 19, 179194.Google Scholar
Burkli, A. & Cherry, R. J. (1981). Rotational motion and flexibility of Ca2+, Mg2+-dependent ATPase in sarcoplasmic reticulum membrane. Biochemistry 20, 138145.Google Scholar
Cahalan, M. D., Chandy, K. G., Decoursey, T. E. & Gupta, S. (1985). A voltage gated potassium channel in human T lymphocytes. J. Physiol. 358, 197237.Google Scholar
Cantor, C. R. & SchimmelP, R. P, R. (1980). Biophysical Chemistry, part II, pp. 433465. San Francisco: FreemanGoogle Scholar
Castagna, M., Rochette-Egly, C., Rosenfeld, C. & Mishal, Z. (1979). Altered lipid microviscosity in lymphoblastoid cells treated with 12-o-tetradecanoyl-phorbol-13-acetate, a tumor promoter. FEBS Lett. 100, 6266.Google Scholar
Chan, S. S., Arndt-Jovin, D. J. & Jovin, T. M. (1979). Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system. J. Histochem. Cytochem. 27, 5664.Google Scholar
Chandy, G. K., Decoursey, T. E., Fischbach, M., Talal, N., Cahalan, M. D. & Gupta, S. (1986). Altered K+ channel expression in abnormal T lymphocytes from mice with the lpr gene mutation. Science, N.Y. 233, 11971200.Google Scholar
Chen, L. A., Dale, R. E., Roth, S. & Brand, L. (1977). Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of ‘Microviscosity’. J. biol. Chem. 252, 21632169.Google Scholar
Cheng, K. H., Wiedmer, T. & Sims, P. J. (1985). Fluorescence resonance energy transfer study of the associative state of membrane-bound complexes of complement proteins Csb-8. J. Immun. 135, 459464.Google Scholar
Cherry, R. J. (1979). Rotational and lateral diffusion of membrane proteins. Biochim. biophys. Acta 559, 289327.Google Scholar
Cherry, R. J. (1985). Transient dichroism and rotational diffusion of macromolecules: applications to membrane proteins. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bayley, P. M. & Dale, R. E.), pp. 7995. London: Academic Press.Google Scholar
Cherry, R. J. (1986). Effect of mellitin and membrane potential on the mobility of band, 3 proteins in human erythrocyte membranes. In Dynamics of Biochemical Systems (ed. Damjanovich, S., Keleti, T. & Tron, L.), pp. 487500. Amsterdam: Elsevier; Budapest: Akademiai Kiadó.Google Scholar
Cherry, R. J., Burkli, A., Busslinger, M., Schneider, G. & Parrish, G. R. (1976). Rotational diffusion of band 3 proteins in the human erythrocyte membrane. Nature, Lond. 263, 389393.CrossRefGoogle ScholarPubMed
Christian, S. T., Monti, J. A. & Finley, W. H. (1977). Membrane fluidity in normal and cystic fibrosis fibroblasts. Biochem. biophys. Res. Commun. 79, 966972.Google Scholar
Chused, T. M., Wilson, A. H., Seligmann, B. E. & Tsien, R. Y. (1986). Probes for use in the study of leukocyte physiology by flow cytometry. In Application of Fluorescence in the Biomedical Sciences (ed. Taylor, D. L., Waggoner, A. S., Lanni, F., Murphy, R. F. & Birge, R. R.), pp. 531544. New York: A. R. Liss.Google Scholar
Clegg, R. M. & Vaz, W. L. C. (1985). Translational diffusion of proteins and lipids in artificial bilayer membranes. A comparison of experiment with theory. In Progress in Protein-Lipid Interactions, vol. 1 (ed. Watts, /DePont, ), pp. 173229. Amsterdam: Elsevier.Google Scholar
Coggeshall, K. M. & Cambier, J. C. (1984). B cell activation. VIII. Membrane immunoglobulins transduce signals via activation of phosphatidylinositol hydrolysis. J. Immun. 133, 33823386.Google Scholar
Cohen, L. B. (1973). Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev. 53, 573618.Google Scholar
Cohen, M. H. & Turnbull, D. (1959). Molecular transport in liquids and glasses. J. chem. Phys. 31, 11641169.Google Scholar
Cohen, R. L., Muirhead, K. A., Gill, J. E., Waggoner, A. S. & Horan, P. K. (1981). A cyanine dye distinguishes between cycling and non-cycling fibroblasts. Nature, Lond. 290, 593595.Google Scholar
Collard, J. G. & Dewildt, A. (1978). Localization of the lipid probe 1, 6-diphenyl- 1, 3, 5-hexatriene (DPH) in intact cells by fluorescence microscopy. Exp. Cell Res. 116, 447450.Google Scholar
Cone, C. J. Jr. (1970). Variation of transmembrane potential level as a basic mechanism of mitotic control. Oncology 24, 438470.Google Scholar
Cone, R. A. (1972). Rotational diffusion of rhodopsin in the visual receptor membrane., Nature, Lond. 236, 3943.Google Scholar
Corda, D., Pasternak, C. & Shinitzky, M. (1982). Increase in lipid microviscosity of unilamellar vesicles upon creation of transmembrane potential. J. membrane Biol. 65, 235242.Google Scholar
Corin, A. F., Matayoshi, E. D. & Jovin, T. M. (1985). Triplet state spectroscopy forinvestigating diffusion and chemical kinetics. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bayley, P. M. & Dale, R. E.), pp. 5379. London: Academic Press.Google Scholar
Cornish, T. J. & Ledbetter, J. W. (1984). Interactions at the active site of glycogen phosphorylase b. A new laser probe. Eur. J. Biochem. 143, 6367.CrossRefGoogle Scholar
Cuetrecasas, P. (1986). Hormone receptors, membrane phospholipids and protein kinases. The Harvey Lectures, Series 80, 89–128.Google Scholar
Dale, R. E., Eisinger, J. & Blumberg, W. E. (1979). The orientational freedom of. molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161194.Google Scholar
Dale, R. E., Novros, J., Roth, S., Edidin, M. & Brand, L. (1981). Application of Förster long-range excitation energy transfer to the determination of distributions of fluorescently-labelled concanavalin A receptor complexes at the surfaces of yeast and of normal and malignant fibroblasts. In Fluorescent Probes (ed. Beddard, G. S. & West, M. A.), pp. 159181. London: Academic Press.Google Scholar
Damjanovich, S. & Somogyi, B. (1973). Molecular enzyme model based on oriented energy transfer. J. theor. Biol. 41, 567569.Google Scholar
Damjanovich, S., Aszalos, A., Mulhern, S., Balázs, M. & Mátyus, L. (1986). Cytoplasmic membrane potential of mouse lymphocytes is decreased by cyclosporins. Molec. Immun. 23, 175180.Google Scholar
Damjanovich, S., Aszalos, A., Mulhern, S., Szöllösi, J., Balázs, M., Trón, L. & Fulwyler, M. J. (1987). Cyclosporin depolarizes human lymphocytes: earliest observed effects on cell metabolism. Eur. J. Immun. 17, 763768.Google Scholar
Damjanovich, S., Aszalos, A., Mulhern, S. A., Marti, G., Balázs, M. & Mátyus, L. (1985). Cyclosporin A influences membrane potential of human and mouse lymphocytes. A critical comparison of steady-state fluorimetric and flow cytometric measurements. Biophys. J. 47, 271a.Google Scholar
Damjanovich, S., Somogyi, B., & Trón, L. (1981). Macromolecular dynamics and information transfer. Advances in Physiological Sciences, vol. 30. Neural communication and control (ed. Székely, G., Lábos, E., Damjanovich, S.), pp. 921.Google Scholar
Damjanovich, S., Trón, L., Szöllösi, J., Zidovetzki, R., Vaz, W. L. C., Regateiro, F., Arndt-Jovin, D. J. & Jovin, T. M. (1983). Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc. natn. Acad. Sci. U.S.A. 80, 59855989.CrossRefGoogle ScholarPubMed
Daniele, R. & Holian, S. K. (1976). A potassium ionophore (valinomycin) inhibits lymphocyte proliferation by its effects on the cell membrane. Proc. natn. Acad. Sci. U.S.A. 73, 35993602.Google Scholar
Decoursey, T. E., Chandy, G. K., Gupta, S. & Cahalan, M. D. (1984). Voltage gated K+ channels in human T lymphocytes: a role in mitogenesis. Nature, Lond. 307, 465468.Google Scholar
DeLaat, S. W., Van Der Saag, P. T. & Shinitzky, M. (1977). Microviscosity modulation during the cell cycle of neuroblastoma cells. Proc. natn. Acad. Sci. U.S.A. 74, 44584461.Google Scholar
DeLaat, S. W., Van Der Saag, P. T., Nelemans, S. A. & Shinitzky, M. (1978). Microviscosity changes during differentiation of neuroblastoma cells. Biochim. biophys. Acta 509, 188193.Google Scholar
Deutsch, C., Holian, A., Holian, S. K., Daniele, R. P. & Wilson, D. F. (1979). Transmembrane electrical and pH gradient across human erythrocytes and human peripheral lymphocytes. J. cell. comp. Physiol. 99, 7994.CrossRefGoogle ScholarPubMed
Deutsch, C. J. & Price, M. (1982). Role of extracellular Na+ and K+ in lymphocyte activation. J. cell. comp. Physiol. 113, 7379.Google Scholar
Dewey, T. G. & Hammes, G. G. (1980). Calculation of fluorescence resonance energy transfer on surfaces. Biophys. J. 32, 10231035.CrossRefGoogle Scholar
Doody, M. C., Sklar, L. A., Pownall, H. J., Sparrow, J. T., Gotto, A. M. Jr. & Smith, L. C. (1983). A simplified approach to resonance energy transfer in membranes, lipoproteins and spatially restricted systems. Biophys. Chem. 17, 139152.CrossRefGoogle ScholarPubMed
Dwyer, T. M. & Cuchens, M. (1987). Membrane potential measurements by flow cytometry. Journal of Electrophysiol. Technol. 14, 4357.Google Scholar
Edidin, M., Aszalos, A., Damjanovich, S. & Waldmann, T. A. (1988). Lateral diffusion measurements give evidence for association of the Tac peptide of the IL-2 receptor with the T27 peptide in the plasma membrane of HUT102B2 T cells. J. Immun. (accepted).Google Scholar
Edidin, M. & Wei, T. (1977). Diffusion rates of cell surface antigens of mouse-human heterokaryons. II. Effect of membrane potential on lateral diffusion. J. cell Biol. 75, 483489.Google Scholar
Edidin, M. & Wier, M. (1986). Mobility of membrane proteins and the social life of cells. Biochem. Soc. Trans. 14, 818819.Google Scholar
Edidin, M. & Zuniga, M. (1984). Lateral diffusion of wild-type and mutant Ld antigens in L cells. J. cell Biol. 99, 23332335.Google Scholar
Edidin, M. (1974). Rotational and translational diffusion in membranes. A. Rev. Biophys. Bioengng 3, 179201.Google Scholar
Einstein, A. (1905). Investigations on the Theory of the Brownian Movement (ed. Furth, R.), pp. 135. New York: Dover.Google Scholar
Elson, E. L. & Magde, D. (1974). Fluorescence correlation sepectroscopy. I. Conceptual basis and theory. Biopolymers 13, 127.Google Scholar
Estep, T. N. & Thompson, T. E. (1979). Energy transfer in lipid bilayers. Biophys. J. 26, 195208.CrossRefGoogle ScholarPubMed
Fairclough, R. M. & Cantor, C. (1978). The use of singlet-singlet energy transfer to study macromolecular assemblies. In Methods in Enzymology (ed. Hirs, Ch. W. & Timasheff, S. N.) 48, 347379.Google Scholar
Felber, S. M. & Brand, M. D. (1983 a). Early plasma membrane potential changes during stimulation of lymphocytes by concanavalin A. Biochem. J. 210, 885891.Google Scholar
Felber, S. M. & Brand, M. D. (1983 b). Concanavalin A causes an increase in sodium permeability and intracellular sodium content of pig lymphocytes. Biochem. J. 210, 893897.Google Scholar
Fernandez, S. M. & Berlin, R. D. (1976). Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature, Lond. 264, 411415.Google Scholar
Fischer, P. B., Flamm, M., Schachter, D. & Weinstein, I. B. (1979). Tumor promoters induce membrane changes detected by fluorescence polarization. Biochem. biophys. Res. Commun. 86, 10631068.CrossRefGoogle Scholar
Fishman, H. M. (1985). Relaxations, fluctuations and ion transfer across membranes. Q. Rev. Biophys. 46, 127162.Google Scholar
Flaherty, L. & Zimmermann, D. (1979). Surface mapping of mouse thymocytes. Proc. natn. Acad. Sci. U.S.A. 76, 19901993.Google Scholar
Frehland, E., Kreikenbohm, R. & Pohl, W. G. (1982). Steady-state fluorescence polarization in planar lipid membranes: experimental and theoretical analysis of the fluorophores 8-anilino-i-naphtalene sulfonate, 1, 6,-diphenyl-1, 3, 5- hexatriene, dansyllisine-valynomycin and n-(9-anthroyloxy)-fatty acids. Biophys. Chem. 15, 7386.Google Scholar
Freire, E. & Snyder, B. (1982). Quantitative characterization of the lateral distribution of membrane proteins within the lipid bilayer. Biophys. Chem. 37, 617624.Google Scholar
Frye, L. D. & Edidin, M. (1970). The rapid intermixing of cell surface antigens after formation of mouse human heterokaryons. J. cell Sci. 7, 319335.Google Scholar
Fukushima, Y. & Hagiwara, S. (1985). Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes. J. Physiol. 358, 255284.Google Scholar
Förster, T. H. (1948). Intramolecular energy migration and fluorescence. Annls Phys. (Leipzig) 2, 5575.Google Scholar
Garland, P. B. & Johnson, P. (1985). Optical methods for measuring the rotational diffusion of membrane proteins. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bayley, P. M. & Dale, R. E.), pp. 95118. London: Academic Press.Google Scholar
Gavish, B. & Werber, M. M. (1979). Viscosity dependent structural fluctuations in enzyme catalysis. Biochemistry 18, 12691275.Google Scholar
Geiger, B., Rosenthal, K. L., Klein, J., Zinkernagel, K. M., & Singer, S. J. (1979). Selective and unidirectional membrane redistribution of H-2 antigen with an antibody-clustered viral antigen: Relationship to mechanism of cytotoxic T-cell interactions. Proc. natn. Acad. Sci. U.S.A. 76, 46034607.Google Scholar
Gelfand, E. W., Cheung, R. K. & Mills, G. B. (1987). The cyclosporins inhibit lymphocyte activation at more than one site. J. Immun. 138, 11151120.Google Scholar
Georgescauld, D. & Duclohier, H. (1978). Transient fluorescent signals from pyrene labeled pike nerves during action potential: possible implications for membrane fluidity changes. Biochem. biophys. Res. Commun. 85, 11861191.Google Scholar
Gerson, D. F., Kiefer, H. & Eufe, W. (1982). Intracellular pH of mitogen stimulated lymphocytes. Science, N.Y. 216, 10091010.Google Scholar
Golan, D. E. & Veatch, W. (1980). Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control of cytoskeletal interactions. Proc. natn. Acad. Sci. U.S.A. 77, 25372541.Google Scholar
Greene, W. C. & Leonard, W. J. (1986). The human interleukin-2 receptor. A. Rev. Immun. 4, 6995.Google Scholar
Grinvald, A. (1985). Real time optical mapping of neuronal activity: from growth cones to the intact mammalian brain. A. Rev. Neurosci. 8, 263305.Google Scholar
Grinvald, A., Hildesheim, R., Farber, I. & Anglister, C. (1982). Improved fluorescence probes for the measurement of rapid changes in membrane potential. Biophys. J. 39, 301308.Google Scholar
Grynkiewich, G., Poenie, M. & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 34403450.Google Scholar
Gukovskaya, A. S. & Zinchenko, V. P. (1985). The effects of ionophore A23187 and concavalin A on the membrane potential of human peripheral blood lymphocytes and rat thymocytes. Biochim. biophys. Acta 815, 433440.Google Scholar
Gutierrez-Merino, C. (1981 a). Quantitation of the Förster energy transfer for twodimensional systems. I. Lateral phase separation in unilamellar vesicles formed by binary phospholipid mixtures. Biophys. Chem. 14, 247257.Google Scholar
Gutierrez-Merino, C. (1981 b). Quantitation of the Förster energy transfer for twodimensional systems. II. Protein distribution and aggregation state in biological membranes. Biophys. Chem. 14, 259266.Google Scholar
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. (1981). Improved patch clamp techniques for high resolution current recording from cells and cell free membrane patches. Pftügers Arch. 391, 85100.Google Scholar
Hasselbacher, C. A., Street, T. L. & Dewey, T. G. (1984). Resonance energy transfer as a monitor of membrane protein domain segregation: application to the aggregation of bacteriorhodopsin reconstituted into phospholipid vesicles. Biochemistry 23, 64456452.Google Scholar
Hawrylowicz, C. M. & Klaus, G. G. B. (1984). Activation and proliferation signals in mouse B cells. IV. Concavalin A stimulates B cells to leave Go but not to proliferate. Immunology 53, 703711.Google Scholar
Henis, Y. & Gutman, O. (1983). Lateral diffusion and patch formation of H-2Kk antigens on mouse spleen lymphocytes. Biochim. biophys. Acta 762, 281288.Google Scholar
Henis, Y. I. & Elson, E. L. (1981). Inhibition of the motility mouse lymphocytes surface immunoglobulins by locally bound concanavalin A. Proc. natn. Acad. Sci. U.S.A. 78, 10721076.Google Scholar
Hess, A. D. & Colombani, P. M. (1986). Mechanism of action of cyclosporine: Role of calmodulin, cyclophilin and other cyclosporine-binding proteins. Transplantation Proceedings, vol. XVIII suppl. 5, pp. 219237.Google Scholar
Heyn, P. (1979). Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 108, 359364.Google Scholar
Hofman, J. F. & Laris, P. (1974). Determination of membrane potentials in human and amphibian red blood cells by means of a fluorescent probe. J. Physiol. 239, 519552.Google Scholar
Horrocks, W. D. Jr., Holmquist, B. & Vallee, B. L. (1972). Energy transfer between terbium (III) and cobalt (II) in thermolysine: a new class of metal-metal distance probes. Proc. natn. Acad. Sci. U.S.A. 72, 47634768.Google Scholar
Hubbell, W. L. & McConnell, H. M. (1971). Molecular motion in spin labelled phospholipids and membranes. J. Am. Chent. Soc. 93, 314326.Google ScholarPubMed
Hughes, B. D., Pailthorpe, B. A. & White, L. R. (1981). The translational and rotational drag on a cylinder moving in a membrane. J. Fluid Mech. 110, 349372.Google Scholar
Inbar, M. (1976). Fluidity of membrane lipids: single cell analysis of mouse normal lymphocytes and malignant lymphoma cells. Biochim. Biophys. Acta 67, 180185.Google Scholar
Ip, S. H. & Cooper, R. A. (1980). Decreased membrane fluidity during differentiation of human promyelocytic leukemia cells in culture. Blood 56, 227232.Google Scholar
Ishihara, A., Hou, Y. & Jacobson, K. (1987). The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc. natn. Acad. Sci. U.S.A. 84, 12901293.CrossRefGoogle Scholar
Jacobson, K., Ishihara, A. & Inman, R. (1987). Lateral diffusion of proteins in membranes. A. Rev. Physiol. 49, 163175.Google Scholar
Jahnig, F. (1979). Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc. natn. Acad. Sci. U.S.A. 76, 63616365.CrossRefGoogle ScholarPubMed
Jenis, D. M., Stepanowski, A. L., Blair, O. C., Burger, D. E. & Sartorelli, A. C. (1984). Lectin receptors proximity on HL-60 leukemia cells determined by fluorescence energy transfer using flow cytometry. J. cell. Physiol. 121, 501507.Google Scholar
Johnson, P. & Garland, P. B. (1981). Depolarization of fluorescence depletion. A microscopic method for measuring rotational diffusion of membrane proteins on the surface of a single cell. FEBS Lett. 132, 252256.Google Scholar
Johnson, S. M. & Kramers, M. (1978). Membrane viscosity differences in normal and leukemic human lymphocytes. Biochem. Biophys. Res. Commun. 80, 451457.Google Scholar
Johnson, S. M. & Robinson, R. (1979). The composition and fluidity of normal and leukemic or lymphomatous lymphocyte plasma membranes in mouse and man. Biochim. biophys. Acta 558, 282295.Google Scholar
Johnstone, R. M., Laris, P. C. & Eddy, A. A. (1982). The use of fluorescent dyes to measure membrane potentials: a critique. J. cell. Physiol. 112, 298301.Google Scholar
Jost, P. C., Griffith, O. H., Capaldi, R. A. & Van Der Kooi, G. (1973). Evidence for boundary lipid in membranes. Proc. natn. Acad. Sci. U.S.A. 70, 480484.Google Scholar
Jovin, T. M. (1979). Fluorescence polarization and energy transfer: theory and application. In Flow Cytometry and Sorting (ed. Melamed, M. R., Mullaney, P. F. & Mendelsohn, M. L.), pp. 137165. New York: John Wiley.Google Scholar
Jovin, T. M. (1986). Rotational diffusion on cell surfaces: Contrasting effect of temperature on epidermal growth factor and Fc (immunoglobulin) receptors. Biochem. Soc. Trans. 14, 817818.Google Scholar
Jovin, T. M. & Vaz, W. L. C. (1987). Rotational and translational diffusion in membranes measured by fluorescence and phosphorescence methods. Meth. Enzymol. (in press).Google Scholar
Jovin, T. M., Bartholdi, M., Vaz, W. L. C. & Austin, R. H. (1981). Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy. Ann. N.Y. Acad. Sci. 366, 176196.Google Scholar
Kahn, C. R., Baird, K. L., Jarrett, D. B. & Flier, J. S. (1978). Direct demonstration that receptor crosslinking or aggregation is important in insulin action. Proc. natn. Acad. Sci. U.S.A. 75, 42094213.Google Scholar
Karnovsky, M. J., Kleinfeld, A. M., Hoover, R. L., Dawidowicz, E. A., McIntyre, D. E., Salzman, E. A. & Klausner, R. D. (1982). Lipid domains in membranes. A. N. Y. Acad. Sci. 401, 6174.Google Scholar
Kawato, S., Kinosita, K. Jr. & Ikegami, A. (1977). Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry 16, 23192324.Google Scholar
Kay, J. E., Benzie, C. R. & Borghetti, A. F. (1983). Effect of cyclosporin A on lymphocyte activation by the calcium ionophore A23817. Immunology 50, 441446.Google Scholar
Kiefer, H., Blume, A. J. & Kaback, H. R. (1980). Membrane potential changes during mitogenic stimulation of mouse spleen lymphocytes. Proc. natn. Acad. Sci. U.S.A. 77, 22002204.Google Scholar
Kimelberg, H. K. (1975). Altrations in phospholipid dependent (Na++ K+)-ATPase activity due to lipid fluidity: effects of cholesterol and Mg2+. Biochim. biophys. Acta 413, 143151Google Scholar
Kinosita, K. Jr., Kataoka, R., Kimura, Y., Gotoh, O. & Ikegami, A. (1981). Dynamic structure of biological membranes as probed by 1, 6-diphenyl-1, 3, 5- hexatriene: a nanosecond fluorescence depolarization study. Biochemistry 20, 42704277.Google Scholar
Kinosita, K. Jr., Kawato, S. & Ikegami, A. (1977). A theory of fluorescence polarization decay in membranes. Biophys. J. 20, 289305.Google Scholar
Kistler, J., Stroud, R. M., Klymkowsky, M. W., Lalancette, R. A. & Fairclough, R. H. (1982). Structure and function of an acetylcholine receptor. Biophys. J. 37, 371383.Google Scholar
Klausner, R. D., Kleinfeld, A. M., Hoover, R. L. & Karnovsky, M. J. (1980). Lipid domains in membranes: evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. biol. Chem. 255, 12861295.Google Scholar
Klein, J., Jurectic, A., Baxevanis, C. N. & Nagy, Z. A. (1981). The traditional and a new version of the mouse H-2 complex. Nature (Lond.) 291, 455460.Google Scholar
Kleinfeld, A. M. & Lukacovich, M. F. (1985). Energy-transfer study of cytochromebs using the anthroyloxy fatty acid membrane probes. Biochemistry 24, 18831890.Google Scholar
Koppel, D. E. (1979). Fluorescence redistribution after photobleaching. A new multipoint analysis of membrane translational dynamics. Biophys. J. 28, 281292.Google Scholar
Koppel, D. E., Sheetz, M. P. & Schindler, M. (1981). Matrix control of protein diffusion in biological membranes. Proc. natn. Acad. Sci. U.S.A. 78, 35763580.Google Scholar
Kuhry, J.-G., Duportail, G., Bronner, C. & Laustriat, G. (1985). Plasma membranefluidity measurements on whole living cells by fluorescence anisotropy of tri-methylammoniumdiphenylhexatriene. Biochim. Biophys. Acta 845, 6067.Google Scholar
Kung, C. E. & Reed, J. K. (1986). Microviscosity measurements of phospholipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry 25, 61146121.Google Scholar
L'Allemain, G., Frachi, A., Cragoe, E. Jr. & Pouyssegur, J. (1984). Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. J. biol. Chem. 259, 43134319.Google Scholar
Lakowicz, J. R. (1986). Principles of Fluorescence Spectroscopy, 3rd edn, pp. 303339. New York: Plenum Press.Google Scholar
Lakowicz, J. R., Prendergast, F. G. & Hogen, D. (1979). Differential polarized phase fluorometric investigation of diphenylhexatryene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry 18, 508519.Google Scholar
Leffert, H. L. (1980). Growth regulation by ion fluxes. Ann. N. Y. Acad. Sci. 339.Google Scholar
Lelkes, P. (1979). Potential dependent rigidity changes in lipid membrane vesicles. Biochem. biophys. Res. Commun. 90, 656664.Google Scholar
Levi, A., Shechter, J., Neufeld, E. J. & Schlessinger, J. (1980). Mobility clustering and transport of nerve growth factor in embrional sensory cells and in a sympathetic neuronal cell line. Proc. natn. Acad. Sci. U.S.A. 77, 34693473.CrossRefGoogle Scholar
Lipari, G. & Szabo, A. (1980). Effect of librational motion on fluorescence depolarization and NMR relaxation in macromolecules and membranes: diffusion in a cone. Biophys. J. 30, 489506.Google Scholar
Magde, D., Webb, W. W. & Elson, E. L. (1978). Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17, 361376.Google Scholar
Mandel, G. & Clark, W. (1978). Functional properties of EL-4 tumor cells with lipidaltered membranes. J. Immun. 120, 16371643.Google Scholar
Marsh, D. (1985). ESR probes for structure and dynamics of membranes. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bayley, P. M. & Dale, R. E.), pp. 209239. London: Academic Press.Google Scholar
Marsh, D., Watts, A., Pates, R. D., Uhl, R., Knowles, P. F. & Esmann, M. (1982). ESR spin label studies of lipid-protein interactions in membranes. Biophys. J. 37, 265274.Google Scholar
Martonosi, A. N. (1982). Membranes and Transport, vols 1, 2. New York, London: Plenum Press.Google Scholar
Matayoshi, E. D., Corin, A. F., Zidovetzki, R., Sawyer, W. H. & Jovin, T. M. (1983). Rotational dynamics of cell surface proteins by time-resolved phosphorescence anisotropy. In Mobility and Recognition in Cell Biology (ed. Sund, H. & Veeger, C.), pp. 119134. Berlin, New York: Walter De Gruyter.Google Scholar
Matko, J. & Jovin, T. M. (1988). Transient fluorescence spectroscopy (TFS) using schiff-bases: probing molecular environment and rotational diffusion in the μs–ms time domain (in preparation).Google Scholar
Matko, J., Papp, S., Hevessy, J., Nagy, P. & Somogyi, B. (1983). Segmental mobility in glycogen phosphorylase. Biochim. biophys. Acta 747, 4248.Google Scholar
Matko, J., Trón, L., Balázs, M., Hevessy, J., Somogyi, B. & Damjanovich, S. (1980). Correlation between activity and dynamics of the protein matrix of phosphorylase b. Biochemistry 19, 57825786.Google Scholar
Matteson, D. R. & Deutsch, C. (1984). K+ channels in T lymphocytes: A patch clamp study using monoclonal antibody adhesion. Nature, Land. 307, 468470.Google Scholar
Mátyus, L., Balázs, M., Aszalos, A., Mulhern, S. & Damjanovich, S. (1986). Cyclosporin A depolarizes cytoplasmic membrane potential and interacts with Ca2+ ionophores. Biochim. biophys. Acta 886, 353360.Google Scholar
Maxfield, F. R., Willingham, M. C., Davies, P. J. A. & Pastan, I. (1979). Amines inhibit the clustering of α2-macroglobulin and EGF on the fibroblast cell surface. Nature, Lond. 277, 661663.Google Scholar
McCloskey, M. & Poo, M. (1984). Protein diffusion in cell membranes: some biological implications. Int. Rev. Cytol. 87, 1972.Google Scholar
McConnell, H. M. (1976). Molecular motion in biological membrane. In Spin labeling: Theory and Applications (ed. Berliner, L. J.), pp. 525. New York: Academic Press.Google Scholar
McMurchie, E. J. & Raison, J. K. (1979). Membrane lipid fluidity and its effect on the activation energy of membrane-associated enzymes. Biochim. biophys. Acta 554, 364374.Google Scholar
Monroe, J. G. & Cambrier, J. C. (1983 a). B cell activation. III. B cell plasma membrane depolarization and hyper 1a antigen expression induced by receptor immunoglobulin cross-linking are coupled. J. exp. Med. 158, 15981599.Google Scholar
Monroe, J. G. & Cambier, J. C. (1983 b). B cell activation. I. Anti-immunoglobulin induced receptor cross-linking results in a decrease in the plasma membrane potential of murine B lymphocytes. J. exp. Med. 157, 20732086.Google Scholar
Monroe, J. G. & Cambrier, J. C. (1983 c). B cell activation. II. Receptor cross-linking by thymus-independent and thymus-dependent antigens induces a rapid decrease in the plasma membrane potential of antigen-binding B lymphocytes. J. Immun. 131, 26412644.Google Scholar
Monroe, J. G., Niedel, J. E. & Cambier, J. C. (1984). B cell activation. IV. Induction of cell membrane depolarization and hyper Ia expression by phorbol diesters suggest a role for protein kinase C in murine B lymphocyte activation. J. Immun. 132, 14721478.Google Scholar
Moore, C., Boxer, D. & Garland, P. (1979). Phosphorescence depolarisation and the measurement of rotational motion of proteins in membranes. FEBS Lett. 108, 161166.Google Scholar
Morgan, C. G., Thomas, E. W. & Yianni, Y. P. (1983). The use of fluorescence energy transfer to distinguish between poly(ethylene glycol)-induced aggregation and fusion of phospholipid vesicles. Biochim. Biophys. Acta 728, 356362.Google Scholar
Morris, S. J. & Bradley, D. (1984). Calcium-promoted fusion of isolated chromaffin granules detected by resonance energy transfer between labeled lipids embedded in the membrane bilayer. Biochemistry 23, 46424650.Google Scholar
Morris, S. J., Südhof, T. C. & Haynes, D. H. (1982 a). Calcium-promoted resonance energy transfer between fluorescently labeled proteins during aggregation of chromaffin granule membranes. Biochim. biophys. Acta 693, 425436.Google Scholar
Morris, S. J., Südhof, T. C. & Haynes, D. H. (1982 b). Lipid and protein interactions in Ca2+-promoted aggregation and fusion chromaffin granule membranes. Biophys. J. 37, 117118.Google Scholar
Muller, L., Garcia-Segura, M., Parducz, A. & Dunant, Y. (1987). Brief occurence of a population of presynaptic intramembrane particles coincides with transmission of a nerve impulse. Proc. natn. Acad. Sci. U.S.A. 84, 590594.Google Scholar
Muller, C. P. & Krueger, G. R. F. (1986). Modulation of membrane proteins by vertical phase separation and membrane lipid fluidity. Basis for a new approach to tumor immunotherapy. Anticancer Res. 6, 11811194.Google Scholar
Muller, C. P., Volloch, Z. & Shinitzky, M. (1980). Correlation between cell density, membrane fluidity and the availability of transferrin receptors in Friend erythroleukemic cells. Cell. Biophys. 2, 233240.Google Scholar
Neppert, J. & Mueller-Eckhardt, C. (1985). Interdependent membrane mobility of human MHC coded antigens detected by monoclonal antibodies to various epitopes on class I and II molecules. Tissue Antigens 26, 5159.Google Scholar
Nicolson, G. L. (1976). Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components. Biochim. Biophys. Acta 457. 57108.Google Scholar
Nigg, E. A. & Cherry, R. J. (1980). Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc. natn. Acad. Sci. U.S.A. 77, 47024706.Google Scholar
Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983). Structural homology of Torpedo californica acetylcholine receptor subunits. Nature (Lond.) 302, 528532.Google Scholar
Norcross, M. A., Smith, R. T. & Shimizu, S. (1984). Regulation of TCGF production in T cells. II. Early membrane events after anti-Thy-1 binding by the TCGF producing T lymphoma EL-4-G-12. J. Immun. 132, 833838.Google Scholar
Oettgen, H. C., Terhorst, C., Cantley, L. C. & Rosoff, P. M. (1985). Stimulation of the T3-T cell receptor complex induces a membrane potential sensitive calcium influx. Cell 40, 583590.Google Scholar
Ottolenghi, M. & McClure, D. S. (1967). Photochromism. I. The spectroscopy and energy levels of salicylideneaniline. J. chem. Phys. 46, 46134629.Google Scholar
Page, C. S. & Goldsmith, K. T. (1985). Action of a phorbol ester on B cells: potential of stimulant-induced electrical activity. Am. J. Physiol. 248, C527C534.Google Scholar
Pagano, R. E., Ozato, K. & Ruysschaert, J. M. (1977). Intacellular distribution of lipophilic fluorescent probes in mammalian cells. Biochim. Biophys. Acta 465, 661666.Google Scholar
Papp, S., Pikula, S. & Martonosi, A. (1987). Fluorescence energy transfer as an indicator of Ca2+-ATPase interactions in sarcoplasmic reticulum. Biophys. J. 51, 205220.Google Scholar
Pardee, A. B., Duborow, R., Hamlin, J. L. & Kletzien, R. F. (1978). Animal cell cycle. A. Rev. Biochem. 47, 615750.Google Scholar
Pastan, I. H. & Willingham, M. C. (1981). Receptor mediated endocytosis of hormones in cultured cells. A. Rev. Physiol. 43, 239250.Google Scholar
Pawelec, G. P., Shaw, S., Ziegler, A., Müller, C. & Wernet, P. (1982). Differential inhibition of HLA-D or SB-directed secondary lymphoproliferative responses with monoclonal antibodies detecting human Ia-like determinants. J. Immun. 129, 10701075.Google Scholar
Pershadsingh, H. A., Johnstone, R. M. & Laris, P. C. (1978). Influence of (DL)- propanolol and Ca2+ on membrane potential and amino acid transport in Ehrich ascites tumor cells. Biochim. biophys. Acta 509, 360373.Google Scholar
Pershadsingh, H. A., Stubbs, E. B. Jr., Noteboom, W. D., Vorbeck, M. L. & Martin, A. P. (1985). Influence of Ca2+ on the plasma membrane potential and electrogenic uptake of glycine by myeloma cells. Involvement of a Ca2+ activated K+ channel. Biochim. biophys. Acta 821, 445452.Google Scholar
Peters, R. & Beck, K. (1983). Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc. natn Acad. Sci. U.S.A. 80, 71837187.Google Scholar
Peters, R. & Cherry, R. J. (1982). Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: Experimental test of Saffman–Delbrueck equations. Proc. natn. Acad. Sci. U.S.A. 79, 43174321.Google Scholar
Petersen, N. O. & Elson, E. L. (1986). Measurement of diffusion and chemical kinetics by fluorescence photobleaching recovery and fluorescence correlation spectroscopy. Methods in Enzymology vol. 130, pp. 454484. New York: Academic Press.Google Scholar
Petitou, M., Tuy, F., Rosenfeld, C., Mishall, Z., Paintraint, M., Jasmin, C., Mathe, C. & Inbar, M. (1978). Decreased microviscosity of membrane lipids in leukemic cells: two possible mechanism. Proc. natn. Acad. Sci. U.S.A. 75, 23062310.Google Scholar
Poo, M. & Cone, R. A. (1974). Lateral diffusion of rhodopsin in the photreceptor membrane. Nature, Lond. 247, 438441.Google Scholar
Pottel, H., Van Der Meer, W. & Herreman, W. (1983). Correlation between the order parameter and the steady-state fluorescence anisotropy of 1, 6-diphenyl-1, 3, 5,-hexatriene and an evaluation of membrane fluidity. Biochim. biophys. Acta 730, 181186.Google Scholar
Quinn, P. J. (1981). The fluidity of cell membranes and its regulation. Prog. Biophys. molec. Biol. 38, 1104.Google Scholar
Ransom, J. T. & Cambier, J. C. (1986). B cell activation. VII. Independent and synergistic effects of mobilized calcium and diacylglycerol on membrane potential and Ia expression. J. Immun. 36, 6671.CrossRefGoogle Scholar
Read, B. D. & McElhaney, R. N. (1976). Influence of membrane lipid fluidity on glucose and uridine facilitated diffusion in human erythrocytes. Biochim. Biophys. Acta 419, 331341.Google Scholar
Rees, A. R., Gregoriu, M., Johnson, P. & Garland, P. B. (1984). High affinity epidermal growth factor receptors on the surface of A431 cells have restricted lateral diffusion. EMBO J. 3, 18431847.Google Scholar
Rehorek, M., Dencher, N. A. & Heyn, M. P. (1985). Long-range lipid-protein interactions. Evidence from time-resolved fluorescence depolarization and energy-transfer experiments with bacteriorhodopsin-dimyristoyl-phosphatidylcholine vesicles. Biochemistry 24, 59805988.Google Scholar
Restall, C. J., Dale, R. E., Murray, E. K., Gilbert, C. W. & Chapman, D. (1984). Rotational diffusion of calcium-dependent adenosine-5-triphosphatase in sarcoplasmic reticulum: A detailed study. Biochemistry 23, 67656776.Google Scholar
Rigler, R. & Ehrenberg, M. (1976). Fluorescence relaxation spectroscopy in the analysis of macromolecular structure and motion. Q. Rev. Biophys. 9, 119.Google Scholar
Rigler, R. (1985). Progress in intensity correlation spectroscopy and analysis of structure and dynamics of biopolymers. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bailey, P. M. & Dale, R. E.), pp. 3551. London, New York: Academic Press.Google Scholar
Rivnay, B., Bergman, B., Shinitzky, M. & Globerson, A. (1980). Correlation between membrane viscosity, serum cholesterol, lymphocyte activation and ageing in man. Mech. Age Dev. 12, 119124.Google Scholar
Rivnay, B., Globerson, A. & Shinitzky, M. (1979). Viscosity of lymphocyte plasma membrane in ageing mice and its possible relation to serum cholesterol. Mech. Age Dev. 10, 7180.Google Scholar
Saffman, P. G. (1976). Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73, 5936O2.Google Scholar
Saffman, P. G. & Delbrück, M. (1975). Brownian motion in biological membranes. Proc. natn. Acad. Sci. U.S.A. 72, 31113113.Google Scholar
Sagi-Eisenberg, R. & Pecht, I. (1983). Membrane potential changes during IgE mediated histamine release from rat basophylic leukemia cells. J. membrane Biol. 75, 97104.Google Scholar
Sakmann, B. & Neher, E. (1983). Single Channel Recording. New York: Plenum Pressx.Google Scholar
Schlessinger, J. & Elson, E. L. (1982). Fluorescence methods for studying membrane dynamics. In Methods of Experimental Physics, vol. 2, Biophysics (ed. Ehrenstein, G. & Lecar, H.), pp. 197225. New York: Academic Press.Google Scholar
Schlessinger, J., Barak, L. S., Hammes, G. G., Yamada, K. M., Pastan, I., Webb, W. W. & Elson, E. L. (1977). Mobility and distribution of a cell surface glycoprotein and its interaction with other membrane components. Proc. natn. Acad. Sci. U.S.A. 74, 29092913.Google Scholar
Schlessinger, J., Shechter, Y., Willingham, M. C. & Pastan, I. (1978). Direct visualization of binding, aggregation, and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc. natn. Acad. Sci. U.S.A. 75, 26592663.Google Scholar
Schlichter, L., Sidell, N. & Hagiwara, S. (1986). Potassium channels mediate killing by human natural killer cells. Proc. natn Acad. Sci. U.S.A. 83, 451455.Google Scholar
Schreiber, A. B., Hoebeke, J., Vray, B., & Strosberg, D. (1980). Evidence for reversible microsclustering of lentil lectin membrane receptors on HeLa cells. FEBS Lett, III, 303306.Google Scholar
Schreiber, A. B., Hoebeke, J., Vray, B. & Strossberg, D. (1981). Resonance energy transfer studies of the mechanisms of microclustering of lentil lectin membrane receptors on HeLa cells. Exp. Cell Res. 132, 273280.Google Scholar
Schreiner, G. F. & Unanue, E. R. (1976). Membrane and cytoplasmic changes in B lymphocytes induced by ligand-surface immunoglobulin interaction. Adv. Immun. 24, 38150.Google Scholar
Sene, C., Genest, D., Obrenovitch, A., Wahl, P. & Monsigny, M. (1978). Pulse fluorimetry of 1, 6-diphenyl-1, 3, 5-hexatriene incorporated in cell membranes of mouse leukemic L1210 cells. FEBS Lett. 88, 181186.Google Scholar
Smith, K. A. (1987). The two-chain structure of high-affinity IL-2 receptors. Immunology Today 8, 1113.Google Scholar
Smith, R. L. & Oldfield, E. (1984). Dynamic structure of membranes by deuterium NMR. Science, N. Y. 225, 280288.Google Scholar
Smith, T. C. (1982). The use of fluorescent dyes to measure membrane potentials: A response, J. cell. Physiol. 122, 302305.Google Scholar
Snyder, B. & Freire, E. (1982). Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys. y. 40, 137148.Google Scholar
Somogyi, B. & Damjanovich, S. (1975). Relationship between the life-time of an enzyme substrate complex and the properties of the molecular environment. J. theor. Biol. 48, 393401.Google Scholar
Somogyi, B. & Damjanovich, S. (1986). A microenvironmental approach to enzyme dynamics. In The Fluctuating Enzyme (ed. Welch, G. R.), pp. 341368. New York: J. Wiley.Google Scholar
Spiers, A., Moore, C. H., Boxer, D. H. & Garland, P. B. (1983). Segmental motion and rotational diffusion of the Ca2+-translocating adenosine triphosphatase of sarcoplasmic reticulum measured by time-resolved phosphorescence depolarization. Biochem. J. 213, 6774.Google Scholar
Sterkers, G., Henin, Y., Kalil, J., Bagot, M. & Levy, J. P. (1983). Influence of HLA class I- and II-specific monoclonal antibodies on DR-restricted lymphoproliferative responses, J. Immun. 131, 27352740.Google Scholar
Struck, D. K., Hoekstra, D. & Pagano, R. E. (1981). Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20, 40934099.Google Scholar
Stryer, L. (1978). Fluorescence energy transfer as a spectroscopic ruler. A. Rev. Biochem. 47, 819846.Google Scholar
Stubbs, C. D. & Smith, A. D. (1984). The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779, 89137.Google Scholar
Sweet, W. D. & Schroeder, F. (1986). Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner and outer membrane leaflets. Biochem. J. 239, 301310.Google Scholar
Szabo, A. (1984). Theory of fluorescence depolarization in macromolecules and membrane. J. Chem. Phys. 81, 150167.Google Scholar
Szöllösi, J., Damjanovich, S., Goldman, C. K., Fulwyler, M. J., Aszalos, A., Goldstein, G., Rao, P., Talle, M. A. & Waldmann, T. A. (1987 a). Flow cytometric resonance energy transfer measurements support the association of a 95-kDa termed T27 with the 55-kDa Tac peptide. Proc. natn. Acad. Sci. U.S.A. 84, 72467250.Google Scholar
Szöllösi, J., Damjanovich, S., Mulhern, S. A. & Trón, L. (1987 b). Fluorescence energy transfer and membrane potential measurements monitor dynamic properties of cell membranes: a critical review. Prog. Biophys. molec. Biol. 49, 6587.Google Scholar
Szöllösi, J., Mátyus, L., Trón, L., Balázs, M., Ember, I., Fulwyler, M. J. & Damjanovich, S. (1987 c). Flow cytometric measurements of fluorescence energy transfer using single laser excitation. Cytometry 8, 120128.Google Scholar
Szöllösi, J., Trón, L., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D. J. & Jovin, T. M. (1984). Energy transfer measurement on cell surfaces. A critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry 5, 210216.Google Scholar
Szöllösi, J., Trón, L., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D. J. & Jovin, T. M. (1982). Energy transfer measurements on the cell surface. Distribution of H-2KK antigens. In Quo Vadis? Flow Cytometry and Monoclonal Antibodies for Therapy Monitoring (ed. Gros, P., Jansen, F. K., Poncelet, P. & Roncucci, R.), pp. 3344. Montpellier: Sanofi Group.Google Scholar
Tank, D. W., Wu, E.-S. & Webb, W. W. (1982). Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J. cell Biol. 92, 207212.Google Scholar
Taylor, R. B., Duffus, W. P. H., Raff, M. C. & DePetris, S. (1971). Redistribution and pynocytosis of lymphocyte surface immunoglobulin molecules induced by antiimunoglobulin antibody. Nature New Biology 233, 225229.Google Scholar
Thomas, D. D., Eads, T. M., Barnett, V. A., Lindahl, K. M., Momot, D. A. & Squier, T. C. (1985). Saturation transfer EPR and triplet spectroscopy: complementary techniques for the study of microsecond rotational dynamics. In Spectroscopy and Dynamics of Molecular Biological Systems (ed. Bayley, P. M. & Dale, R. E.), pp. 239259. London: Academic Press.Google Scholar
Thulborn, K. R. & Sawyer, W. H. (1978). Properties and locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer. Biochim. biophys. Acta 511, 125140.Google Scholar
Tilley, L., Thulborn, K. R. & Sawyer, W. H. (1979). An assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9-anthroyloxy) fatty acids (n = 2, 6, 9, 12, 16). J. biol. Chem. 254, 25922594.Google Scholar
Trauble, H. & Eibl, H. (1974). Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc. natn. Acad. Sci. U.S.A. 71, 214219.Google Scholar
Trón, L., Szöllösi, J., & Damjanovich, S. (1987). Proximity measurements of cell surface proteins by fluorescence energy transfer. Immun. Lett. 16, 19.Google Scholar
Trón, L., Szöllösi, J., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D. J. & Jovin, T. M. (1984 a). Flow cytometric measurements of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys. J. 45, 939946.Google Scholar
Trón, L., Szöllösi, J., Szabo, G. Jr., Mátyus, L. & Damjanovich, S. (1984 b). Cell surface dynamics and distance relationship of integral membrane proteins. In Membrane Dynamics and Transport of Normal and Tumor Cells (ed. Trón, L., Damjanovich, S., Fonyó, A. & Somogyi, J.), pp. 307328. Budapest: Akadémiai Kiadó.Google Scholar
Tsien, R. Y., Pozzan, T. & Rink, T. J. (1982). T-cell mitogen cause early changes in cytoplasmic free calcium ions and membrane potential in lymphocytes. Nature, Lond. 295, 6871.CrossRefGoogle Scholar
Tsien, R. Y., Pozzan, T. & Rink, T. J. (1984). Measuring and manipulating cytosoling Ca2+ with trapped indicators. Trends Biochem. Sci. 9, 263266.Google Scholar
Tsudo, M., Kozak, R. W., Goldman, C. K. & Waldmann, T. A. (1986). Demonstration of a non-Tac peptide that binds interleukin 2: A potential participant in a multichain interleukin 2 receptor complex. Proc. natn Acad. Sci. U.S.A. 83, 96949698.Google Scholar
Tsuji, A. & Ohnishi, S. (1986). Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25, 61336139.Google Scholar
Van Blitterswijk, W. J., Emmelot, P., Hilkmann, H. A., Oomen-Meulemans, E. P. & Inbar, M. (1977). Differences in lipid fluidity among isolated plasma membranes of normal and leukemic lymphocytes and membranes exfoliated from their cell surface. Biochim. biophys. Acta 467, 309320.Google Scholar
Van Blitterswijk, W. J., Van Hoeven, R. P. & Van Der Meer, B. W. (1981). Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim. biophys. Acta 644, 323332.Google Scholar
Vanderkooi, J. & McLaughlin, A. (1976). Use of fluorescence probes in the study of membrane structure and function. In Biochemical Fluorescence: Concepts, vol. 2 (ed. Chen, R. F. & Edelhoch, H.) pp. 737764. New York, Basel: Marcel Dekker.Google Scholar
Vanderkooi, J. M., Ierokomas, A., Nakamura, H. & Martonosi, A. (1977). Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry 16, 12621267.Google Scholar
Vaz, W. L. C., Clegg, R. M. & Hallman, D. (1985). Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory. Biochemistry 24, 781786.Google Scholar
Vaz, W. L. C., Derzko, Z. I. & Jacobson, K. A. (1982). Photobleaching measurements of lateral diffusion of lipids and proteins in artifical phospholipid bilayer membranes. In Cell Surface Reviews, vol. 8 (ed. Poste, G. & Nicolson, G.), pp. 83135. Amsterdam: Elsevier.Google Scholar
Vaz, W. L. C., Goodsaid-Zalduondo, F. & Jacobson, K. (1984). Lateral diffusion of lipids and proteins in bilayer membranes. FEBS Lett. 174, 199207.Google Scholar
Vaz, W. L. C., Kaufman, K. & Nicksch, A. (1977). Use of energy transfer to assay the association of proteins with lipid membranes. Analyt. Biochem. 83, 385393.Google Scholar
Waggoner, A. S. (1976). Optical probes of membrane potential. J. membrane Biol. 27, 317334.Google Scholar
Waggoner, A. S. (1979). Dye indicators of membrane potential. A. Rev. Biophys. Bioengng 8, 4763.Google Scholar
Waggoner, A. S. (1986). Fluorescent probes for analysis of cell structure, function and health by flow and imaging cytometry. In Applications of Fluorescence in the Biomedical Sciences (ed. Taylor, D. L., Waggoner, A. S., Lanni, F., Murphy, R. F. & Birge, R. R.), pp. 338. New York: A. R. Liss.Google Scholar
Waldmann, T. A. (1986). The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes. Science 23, 727732.Google Scholar
Walters, L. S., Cornish, T. J., Askins, H. W. & Ledbetter, J. W. (1982).Observation of nanosecond transient states in laser-induced reactions of pyridoxal 5′-phosphate. Analyt. Biochim. 127, 361367.Google Scholar
Wanda, P. E. & Smith, J. D. (1982). A general method for heterokaryon detection using resonance energy transfer and a fluorescence-activated cell sorter. J. Histochem. Cytochem. 30, 12971300.Google Scholar
Warren, G. B., Housley, M. D., Metcalf, J. C. & Birdsall, N. J. M. (1975). Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature, Lond. 235, 684687.Google Scholar
Watts, T. H., Gaub, H. E. & McConnell, H. M. (1986). T-cell-mediated association of peptide antigen and major histocompatibility complex protein detected by energy transfer in an evanescent wave-field. Nature, Lond. 320, 179181.Google Scholar
Wegener, W. A. (1984). Fluorescence recovery spectroscopy as a probe of slow rotational motions. Biophys. J. 46, 795803.Google Scholar
Wegener, W. A. & Rigler, R. (1984). Separation of translational and rotational contributions in solutions studies using fluorescence photobleaching recovery. Biophys. J. 46, 787793.Google Scholar
Welch, G. R. (1986). Viscosity and biochemical dynamics in vivo. In Dynamics of Biochemical Systems (ed. Damjanovich, S., Keleti, T. & Tron, L.), pp. 217226. Amsterdam: Elsevier; Budapest: Akademiai Kiado.Google Scholar
Welch, G. R., Somogyi, B. & Damjanovich, S. (1982). The role of protein fluctuations in enzyme action: a review. Prog. Biophys. molec. Biol. 39, 109146.Google Scholar
Welch, G. R., Somogyi, B., Matko, J. & Papp, S. (1983). Effect of viscosity on enzyme-ligand dissociation: role of the microenvironment. J. theor. Biol. 100, 211238.Google Scholar
Whitney, R. B. & Sutherland, R. M. (1972). Enhanced uptake of calcium by transforming lymphocytes. Cell. Immun. 5, 137147.Google Scholar
Wilson, A. H. & Chused, T. M. (1985). Lymphocyte membrane potential and Ca2+ sensitive potassium channels described by oxonol dye fluorescence measurements. J. cell. Physiol. 125, 7281.Google Scholar
Wilson, A. H., Seligmann, B. E. & Chused, T. M. (1985). Voltage sensitive cyanine dye fluorescence signals in lymphocytes: Plasma membrane and motochondrial components, jf. cell. Physiol. 125, 6171.Google Scholar
Witkowski, J. & Micklerm, H. S. (1985). Decreased membrane potential of T lymphocytes in ageing mice: flow cytometric studies with a carbocyanine dye. Immunology 56, 307313.Google Scholar
Wolber, P. K. & Hudson, B. S. (1979). An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28, 197210.Google Scholar
Wu, E.-S., Tank, D. W. & Webb, W. W. (1982). Unconstrained lateral diffusion of ConA receptors on bulbous lymphocytes. Proc. natn. Acad. Sci. U.S.A. 79, 49624966.Google Scholar
Yamada, K. M. & Pastan, I. (1976). Cell surface protein and neoplastic transformation. Trends Biochem. Sci. 1, 222224.Google Scholar
Yoshida, T. M. & Barisas, B. G. (1986). Protein rotational motion in solution measured by polarized fluorescence depletion. Biophys. J. 50, 4153.Google Scholar
Yuli, I., Wilbrandt, W. & Shinitzky, M. (1981). Glucose transport through cell membranes of modified lipid fluidity. Biochemistry 20, 42504256.Google Scholar
Zidovetzki, R., Bartholdi, M., Arndt-Jovin, D. J. & Jovin, T. M. (1986 a). Rotational dynamics of the Fc receptor for immunoglobulin E on histamine-releasing rat basophilic leukemia cells. Biochemistry 25, 43974401.Google Scholar
Zidovetzki, R., Yarden, Y., Schlessinger, J. & Jovin, T. M. (1981). Rotational Diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors. Proc. natn. Acad. Sci. U.S.A. 78, 69816985.Google Scholar
Zidovetzki, R., Yarden, Y., Schlessinger, J. & Jovin, T. M. (1986 b). Microaggregation of hormone-occupied epidermal growth factor receptors on plasma membrane preparations. EMBO J. 5, 247250.Google Scholar