Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T10:38:11.021Z Has data issue: false hasContentIssue false

The Lesions Produced by Ultraviolet Light in DNA Containing 5-Bromouracil

Published online by Cambridge University Press:  17 March 2009

Franklin Hutchinson
Affiliation:
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520

Extract

The compound 5-bromouracil (BrU) may be incorporated into DNA in place of its analog thymine. This review is concerned with the photochemical lesions produced by the action of ultraviolet light on such BrU-DNA, and consequent biological effects of such lesions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aoki, S., Boyce, R. P. & Howard-Flanders, P. (1966). Sensitization of E. coil to radiation by bromouracil. Excessive post-irradiation breakdown of DNA without concommittant synthesis. Nature, Lond. 209, 686–88.CrossRefGoogle Scholar
Arnott, S., Hutchinson, F., Spencer, M., Wilkins, M. H. F., Fuller, W. & Langridge, R. (1966). X-ray diffraction studies of double helical ribonucleic acid. Nature, Lond. 211, 227–32.CrossRefGoogle ScholarPubMed
Bansel, K., Patterson, L. & Schuler, R. (1972). The production of halide ion in the radiolysis of aqueous solutions of the 5-halouracils. J. Phys. Chem., Ithaca 76, 2386–92.CrossRefGoogle Scholar
Beattie, K. L. (1972). Breakage of parental DNA strands in Haemophilus influenzae by 313 nm radiation after replication in the presence of 5- bromodeoxyuridine. Biophys. J. 12, 1573–82.CrossRefGoogle ScholarPubMed
Becker, R. S. (1969). Theory and Interpretation of Fluorescence and Phosphorescence. New York: Wiley—Interscience.Google Scholar
Benhur, E. & Elkind, M. M. (1972). Damage and repair of DNA in 5-BrdU labeled chinese hamster cells exposed to fluorescent light. Biophys. J. 12, 636–47.CrossRefGoogle Scholar
Berens, K. & Shugar, D. (1963). Ultraviolet absorption spectra and structure ofhalogenateduracils and their glycosides. Acta biochimica polon. 10, 2548.Google ScholarPubMed
Bond, P. S. (1968). A two-dimensional thin-layer chromatographic technique for the separation of admixtures of 5-bromouracil and DNA bases. J. Chromat. 34, 554–5.CrossRefGoogle ScholarPubMed
Boyce, R. P. (1961). Ultraviolet light inactivation of E. coil and bacteriophage containing 5-bromouracil-substituted deoxyribonucleic acid. Ph.D. Thesis, Yale University.Google Scholar
Boyce, R. P. & Setlow, R. B. (1963). The action spectra for UV-light inactivation of systems containing 5-bromouracil-substituted DNA. Biochim. biophys. Acta 68, 446–54.CrossRefGoogle Scholar
Buhl, S. N., Setlow, R. B. & Regan, J. D. (1972). Steps in DNA chain elongation and joining after ultraviolet irradiation of human cells. Int. J. Radiat. Biol. 22, 417–24.Google ScholarPubMed
Calvert, J. G. & Pitts, J. N. (1966). Photochemistry, ch. 7. New York: Wiley.Google Scholar
Carlson, P. S. (1969). Production of auxotrophic mutants in ferns. Genet. Res. 14, 337–9.CrossRefGoogle ScholarPubMed
Carlson, P. S. (1970). Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum. Science, N.Y. 168, 487–9.CrossRefGoogle ScholarPubMed
Carrier, W. L. & Setlow, R. B. (1972 a). Action of a UV endonuclease on irradiated bromouracil-containing DNA. IVthInternational Biophysics Congress,Moscow. E111a2/6, p. 122.Google Scholar
Carrier, W. L. & Setlow, R. B. (1972 b). Ultraviolet sensitivity of DNA containing bromodeoxyuridine. VIthInternational Congress on Photobiology,Bochum., Abst. 96.Google Scholar
Cato, A. & Guild, W. (1968). Transformation and DNA size. I. Activity of fragments of defined size and a fit to a random double cross-over model. J. molec. Biol. 37, 157–78.CrossRefGoogle Scholar
Clarke, D. D. & Coulson, C. A. (1969). The dissociative breakdown of negative ions. J. chem. Soc. A 169–72.CrossRefGoogle Scholar
Cleaver, J. E. (1968). Repair replication and degradation of bromouracilsubstituted DNA in mammalian cells after irradiation with ultraviolet light. Biophys. J. 8, 775–91.CrossRefGoogle ScholarPubMed
Couch, J. L. & Hanawalt, P. C. (1971). Analysis of 5-bromouradil distribution in partially substituted DNAs. Analyt. Biochem. 41, 51–6.CrossRefGoogle Scholar
Cramer, J. W., Prusoff, W. H., Chu, M. Y. & Welch, A. D. (1961). The effect of 5-bromo-2'-deoxycytidine (BCDR) on mammalian cells in culture. Proc. Am. Ass. Cancer Res. 3, 217.Google Scholar
Danziger, R. M., Hayon, E., Langmuir, M. E. (1968). Pulse radiolysis and flash photolysis study of aqueous solutions of simple pyrimidines, uracil and bromouradil. J. Phys. Chem. Ithaca 72, 3842–9.CrossRefGoogle Scholar
Davies, D. R. & Baldwin, R. L. (1963). X-ray studies of two synthetic DNA copolymers. J. molec. Biol. 6, 251–5.CrossRefGoogle ScholarPubMed
Denhardt, D. T. & Sinsheimer, R. L. (1965 a). The process of infection with bacteriophage ØX 174. IV. Replication of the viral DNA in a synchronized infection. J. molec. Biol. 12, 647–62.CrossRefGoogle Scholar
Denhardt, D. T. & Sinsheimer, R. L. (1965 b). The process of infection with bacteriophage ØX 174. VI. Inactivation of infected complexes by ultraviolet irradiation. J. molec. Biol. 12, 674–94.CrossRefGoogle Scholar
Dennis, W. S. & Hutchinson, F. (1972). Repair of single-strand breaks induced by ultraviolet light in E. coli DNA containing bromouracil. VIthInternational Congress on Photobiology,Bochum., Abst. 108.Google Scholar
Djordjevic, B. & Szybalski, W. (1960). Genetics of human cell lines. III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J. exp. Med. 112, 509–31.CrossRefGoogle ScholarPubMed
Dodson, M. L., Hewitt, R. & Mandel, M. (1972). Nature of ultraviolet light-induced strand breakage in DNA containing bromouracil. Photochem. & Photobiol. 16, 1525.CrossRefGoogle ScholarPubMed
Ebel, R. & Kraljic, I. (1971). On the mechanism of photosensitization by halogenated pyrimidines. Proc. First European Biophys. Cong. 2, 109–14.Google Scholar
Ehrlich, M. & Riley, M. (1972 a). Photolysis of polyribobromouridylic acid. Photochem. & Photobiol. 16, 385–95.CrossRefGoogle ScholarPubMed
Ehrlich, M. & Riley, M. (1972 b). Oligonucleotide photoproducts formed by photolysis of polyribobromouridylic acid. Photochem. & Photobiol. 16 397412.CrossRefGoogle ScholarPubMed
Eisenberg, R. J. & Pardee, A. B. (1969). DNA replication during episome transfer as studied by bromo deoxyuridine photosensitization. J. molec. Biol. 46, 355–8.CrossRefGoogle Scholar
Eisinger, J. & Lamola, A. (1971). Luminescence spectroscopy of nucleic acids. Metlz. Enzym. 21, 2491.Google Scholar
El-Sayed, M. A. (1963). Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 38, 2834–8.CrossRefGoogle Scholar
Erikson, R. L. & Szybalski, W. (1963). Molecular radiobiology of human cell lines. III. Radiation sensitizing properties of 5-iododeoxyuridine. Cancer Res. 23, 122–30.Google Scholar
Freifelder, D. & Trumbo, B. (1969). Matching of single-strand breaks to form doubled-strand breaks in DNA. Biopolymers 7, 681–93.CrossRefGoogle Scholar
Fox, E. & Meselson, M. (1963). Unequal photosensitivity of the two strands of DNA in bacteriophage λ. J. molec. Biol. 7, 583–9.CrossRefGoogle Scholar
Fox, J. J. & Shugar, D. (1952). Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. II. Natural and synthetic pyrimidine nucleosides. Biochim. biophys. Acta 9, 369–84.CrossRefGoogle ScholarPubMed
Gilbert, E., Volkert, O. & Schulte-Frohlinde, D. (1967). Radiochemistry of aqueous, oxygen containing solutions of 5-bromouracil. Identification of radiolysis products. Z. Naturf. B 22, 477–80.CrossRefGoogle ScholarPubMed
Gilbert, E. & Schulte-Frohlinde, D. (1970). Photolysis of 5-iodouracil in aqueous oxygen saturated solution. Z. Naturf. B 25, 492–5.CrossRefGoogle Scholar
Gilbert, E. & Wagner, G. (1972). Ultraviolet photolysis of 5-iodouracil. IV. Reactions of uracil radicals in aqueous oxygenated solution with primary and secondary alcohols. Z. Naturf. B 27, 68.CrossRefGoogle Scholar
Gilbert, E., Wagner, G. & Schulte-Frohlinde, D. (1971). Photolysis of 5-iodouracil in aqueous solution in the presence of oxygen and methanol. Z. Naturf. B 26, 209–13.CrossRefGoogle Scholar
Gilbert, E., Wagner, G. & Schulte-Frohlinde, D. (1972). Ultraviolet photolysis of 5-iodouracil. Influence of inorganic reducing agents. Z.Naturf. B 27, 501–4.CrossRefGoogle Scholar
Göhde, W. (1968). UV-Empflndlichkeit von E. coli-Zellen mit nur einem BU-hybriden Genom. Stud. Biophys. 12, 151–8.Google Scholar
Greer, S. (1960). Studies on ultraviolet irradiation of E. coli containing 5-bromouracil in its DNA. J. gen. Microbiol. 22, 618–34.CrossRefGoogle ScholarPubMed
Greer, S. & Zamenhof, S. (1957). Effect of 5-bromouracil in DNA of E. coli on sensitivity to ultraviolet irradiation. Abstr. Am. Chem. Soc., 131St Meeting, 3c.Google Scholar
Gurney, T. (1965). A minimum molecular weight for transforming DNA. Ph.D. Thesis, Yale University.Google Scholar
Hackett, P. & Hanawalt, P. (1966). Selectivity for thymine over 5-BU by a thymine-requiring bacterium. Biochim. biophys. Acta 123, 356–63.CrossRefGoogle Scholar
Hanawalt, P. C. (1967). Preparation of 5-bromouracil labeled DNA. Meth. Enzym. A 12, 702–8.CrossRefGoogle Scholar
Haug, A. (1964 a). Photochemical decomposition of TdBU. Z. Naturf. 196, 143–7.CrossRefGoogle Scholar
Haug, A. (1964 b). Influence of cysteine on the photochemical decomposition of thymidyl-(5'-3') bromodeoxyuridine. Biochim. biophys. Acta 88, 480–6.Google Scholar
Hershey, A. D. (ed.) (1971). The Bacteriophage Lambda. Cold Spring Harbor.Google Scholar
Hewitt, R., Billen, D. & Jorgensen, G. (1967). Radiation-induced reorientation of chromosome replication sequence: Generality in E. coli, independence of prophage or 5-bromouracil toxicity. Radiat. Res. 32, 214–26.CrossRefGoogle ScholarPubMed
Hewitt, R., Marburger, K. & Lapthisophon, T. (1969). A mechanism for 5-bromouracil sensitization of some biological systems to ultraviolet light. Radiat. Res. 39, 485.Google Scholar
Hewitt, R., Suit, J. C. & Billen, D. (1967). Utilization of 5-bromouracil by thymineless bacteria. J. Bact. 93, 86–9.CrossRefGoogle ScholarPubMed
Hotz, G. (1963). Suppression by cysteamine of radiosensitization in 5-bromodeoxyuridine substituted phage T-1. Biochem. biophys. Res. Commun. 11, 393–8.CrossRefGoogle Scholar
Hotz, G. (1964). Photoreactivation of UV-damage in phage containing 5-BrU-DNA. Z. VererbLehre 95, 211–14.Google Scholar
Hotz, G. & Reuschl, H. (1967). Damage to deoxyribose molecules and to U-gene reactivation in UV-irradiated 5-bromouracil DNA of phage T4 Boγ as influenced by cysteamine. Molec. & Gen. Genet. 99, 511.CrossRefGoogle ScholarPubMed
Hotz, G., Mauser, R. & Walser, R. (1971). Infectious DNA from coliphage T-I. III. The occurrence of single-strand breaks in stored, thermally-treated, and UV-irradiated molecules. Int. J. Radiat. Biol. 19, 519–36.Google Scholar
Hotz, G. & Walser, R. (1970). On the mechanism of radiosensitization by 5-bromouracil. The occurrence of DNA strand breaks in UV-irradiated phage T4 as influenced by cysteamine. Photochem. & Photobiol. 12, 207–18.CrossRefGoogle Scholar
Howard-Flanders, P., Boyce, R. P., Simson, E. & Theriot, L. (1962). A genetic locus in E. coli K 12 that controls the reactivation of UV-photoproducts associated with thymine in DNA. Proc. natn. Acad. Sci. U.S.A. 48, 2109–15.CrossRefGoogle Scholar
Hutchinson, F. (1964). Radiosensitization of Pneumococcus cells and DNA to ultraviolet light and X-rays by incorporated 5-bromodeoxyuridine. Biochim. biophys. Acta 91, 527–31.Google ScholarPubMed
Hutchinson, F. & Hales, H. (1970). Mechanism of the sensitization of bacterial transforming DNA to ultraviolet light by the incorporation of 5-bromouracil. J. molec. Biol. 50, 5969.CrossRefGoogle ScholarPubMed
Ishihara, H. & Wang, S. Y. (1966 a). Photochemistry of 5-bromouracils: Isolation of 5-5' diuracils. Nature, Lond. 210, 1222–5.CrossRefGoogle Scholar
Ishihara, H. & Wang, S. (1966 b). Photochemistry of 5-bromouracil in aqueous solution. Biochemistry, N.Y. 5, 2307–13.CrossRefGoogle ScholarPubMed
Jagger, J. (1967). Introduction to Research in Ultraviolet Photobiology. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Kanner, L. (1968). Efficiency of utilization of thymine and 5-bromouracil for normal and repair DNA synthesis in bacteria. Biochim. biophys. Acta 157, 532–45.CrossRefGoogle ScholarPubMed
Kaplan, H. S. & Tomlin, P. A. (1960). Enhancement of X-ray sensitivity of E. coli by 5-bromouracll. Radiat. Res. 12, 447–8.Google Scholar
Kleinwachter, V., Drobnik, J. & Augenstein, L. (1966). Spectroscopic properties of the lowest-lying excited states of 2-aminopyrimidine, cytosine, uracil and their derivatives. Photochem. & Photobiol. 5, 579–86.CrossRefGoogle Scholar
Köhnlein, W. & Hutchinson, F. (1969). ESR-studies of normal and 5- bromouracil-substituted DNA of Bacillus subtilis after irradiation with ultraviolet light. Radiat. Res. 39, 745–57.CrossRefGoogle ScholarPubMed
Köhnlein, W. & Mönkehaus, F. (1972 a). Experimental evidence for intramolecular energy transfer in hybrid DNA of B. subtilis after irradiation with long wavelength UV. Z. Naturf. B 27, 708–13.CrossRefGoogle ScholarPubMed
Köhnlein, W. & Mönkehaus, F. (1972 b). On the nature of the radiation damage in the thymine containing strand of hybrid BU-DNA after long wave-length UV. Int. J. Radiat. Biol. 22, 293–6.Google Scholar
Kourim, P., Bors, W. & Schulte-Frohlinde, D. (1971 a). Gamma radiolysis of aqueous solutions of 5-bromo-2-deoxyuridine in the presence of oxygen. Identification of products. Z. Naturf. B 26, 308–11.CrossRefGoogle ScholarPubMed
Kourim, P., Bors, W. & Schulte-Frohlinde, D. (1971 b). γ-Radiolyse wässriger, sauerstoffhaltiger Lösungen von 5-Brom-2'-desoxyuridrn. II. G-Werte der Produkte und Vergleich mit der Radiolyse des Aglykons. Z. Naturf. B 26, 312–14.CrossRefGoogle Scholar
Laird, C. D. & Bodmer, W. F. (1967). 5-bromouracil utilization by B. subtilis. J. Bact. 94, 1277–8.Google ScholarPubMed
Langmuir, M. E. & Hayon, E. (1969). Transient species produced in the photochemistry of 5-bromouracil and its N-methyl derivatives. J. chem. Phys. 51, 4893–9.CrossRefGoogle Scholar
Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. & Hamilton, L. D. (1960). The molecular configuration of deoxyribonucleic acid. II. Molecular models and their fourier transforms. J. molec. Biol. 2, 3864.CrossRefGoogle Scholar
Lehmann, A. R. (1972). Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. molec. Biol. 66, 319–37.CrossRefGoogle ScholarPubMed
Lerman, L. (1963). The quantitative interpretation of the inactivation rates of transforming DNA. In Methology in Basic Genetics (ed. Burdette, W. J.), pp. 83102. San Francisco: Holden-Day.Google Scholar
Ley, R. D. & Setlow, R. B. (1972). Rapid repair of lesions induced by 313 nm light in bromouracil-substituted DNA of Escherichia coli. Biochem. biophys. Res. Commun. 46, 1089–94.CrossRefGoogle ScholarPubMed
Lion, M. B. (1968). Search for a mechanism for the increased sensitivity of bromouracil-substituted DNA to ultraviolet radiation. Biochim. biophys. Acta 155, 505–20.CrossRefGoogle ScholarPubMed
Lion, M. B. (1970 a). Single-strand breaks in DNA of irradiated 5-bromo- uracil-substituted T 3 coliphage. Biochim. biophys. Acta 209, 2433.CrossRefGoogle Scholar
Lion, M. B. (1970 b). On the mechanism of UV-sensitization of 5-bromouracil substituted DNA. IVth Int. Cong. Radiation Res., Evian, France.Google Scholar
Lion, M. B. & Doerner, T. (1972). Determination of the distribution of 5-bromouracil and 5-iodouracil in the DNA of viable and total phage populations. Biochim. biophys. Acta 277, 25–8.CrossRefGoogle ScholarPubMed
Lion, M. B. & Köhnlein, W. (1972). Effect of DNA conformation on the UV damage in 5-bromouracil substituted DNA of T 3 coliphage. VIth Int. Cong. Photobiology, Bochum, Abstract no. 107.Google Scholar
Longworth, J. W., Rahn, R. O. & Schulman, R. G. (1966). Luminescence of pyrimidines, purines, nucleosides and nucleotides at 77 °K. The effect of ionization and tautomerization. J. chem. Phys. 45, 2930–9.CrossRefGoogle ScholarPubMed
McGrath, R. A. & Williams, R. W. (1966). Reconstruction in vivo of irradiated E. coli DNA: the rejoining of broken pieces. Nature, Lond. 212, 534–5.CrossRefGoogle ScholarPubMed
Marchetti, A. & Kearns, D. R. (1967). Spectroscopic and photochemical investigation of the triplet states of p-diiodobenzene and other iodoaromatics. J. Am. chem. Soc. 89, 5335–8.CrossRefGoogle Scholar
Mennigmann, H.-D. (1967). Inaktivierung BUdR-substituierter transformierender DNA durch monochromatisches UV-Licht verschiedener Wellenlängen. Molec. & Gen. Genet. 99, 7687.CrossRefGoogle Scholar
Mönkhaus, F. & Köhnlein, W. (1972). Experiments concerning the intramolecular energy transfer in BU-DNA of the phage PBSH from B. subtilis after long-wave UV-irradiation. Z. Naturf. B 27, 833–9.CrossRefGoogle Scholar
Okada, S. (1970). Radiation Biochemistry. Vol. I. Cells. New York: Academic Press.Google Scholar
Opara-Kubinska, Z., Lorkiewicz, Z. & Szybalski, W. (1961). Genetic transformation studies. II. Radiation sensitivity of halogen labelled DNA. Biochem. biophys. Res. Commun. 4, 288–91.CrossRefGoogle Scholar
Peter, H. & Drewer, R. (1970). Photoproducts of bromouracil-labeled DNA and the structure of 5-bromodeoxyuridylyl-(3'→5')-thymidine photo- product. Photochem. & Photobiol. 12, 269–82.CrossRefGoogle Scholar
Peter, H. & Drewer, R. J. (1971). The photochemistry of 14C-5-bromo-2'- deoxyuridylyl-(3'→5')-thymidine. Determination of quantum yields as a function of pH. Photochem. & Photobiol. 14, 561–7.CrossRefGoogle Scholar
Pohl, D. & Kaplan, R. W. (1968). Einfluss von Bromuracil auf die Mutationsauslösung und Inaktivierung durch UV und Röntgenstrahlen beim Phagen. Biophysik. 4, 196213.CrossRefGoogle Scholar
Puck, T. T. & Kao, F.-T. (1967). Genetics of somatic mammalian cells. V. Treatment with 5-bromodeoxyuridine and visible light for isolation of nutritionally deficient mutants. Proc. natn. Acad. Sci. U.S.A. 58, 1227–34.CrossRefGoogle ScholarPubMed
Radman, M., Roller, A. & Errera, M. (1969 a). Protection and host cell repair of irradiated lambda phage. II. Irradiation of 5-bromouracil substituted phage with near visible light. Molec. & Gen. Genet. 104, 147–51.CrossRefGoogle ScholarPubMed
Radman, M., Roller, A. & Errera, M. (1969 b). Protection and host cell repair of irradiated lambda phage. III. Ultraviolet irradiation of 5-bromo- uracil-substituted phage. Molec. & Gen. Genet. 104, 152–6.CrossRefGoogle Scholar
Ragni, G. & Szybalski, W. (1962). Molecular radiobiology of human cell lines. II. Effects of thymidine replacement by halogenated analogues on cell inactivation by decay of incorporated radiophosphorus. J. molec. Biol. 4, 338–46.CrossRefGoogle ScholarPubMed
Rapaport, S. A. (1964). Action spectrum for inactivation by ultraviolet light of bacteriophage T4 substituted with 5-bromodeoxyuridine. Virology 22, 125–30.CrossRefGoogle Scholar
Rasmussen, R. E. & Painter, R. B. (1964). Evidence for repair of ultraviolet damaged deoxyribonucleic acid in cultured mammalian cells. Nature, Lond. 203, 1360–2.CrossRefGoogle ScholarPubMed
Rasmussen, R. E. & Painter, R. B. (1966). Radiation-stimulated DNA synthesis in cultured mammalian cells. J. Cell Biol. 29, 1119.CrossRefGoogle ScholarPubMed
Regan, J. D., Sestlow, R. B. & Ley, R. D. (1971). Normal and defective repair of damaged DNA in human cells: A sensitive assay utilizing the photolysis of bromodeoxyuridine. Proc. natn. Acad. Sci. U.S.A. 68,708–12.CrossRefGoogle Scholar
Reuschl, H. (1966). Kinetic studies of gamma radiolysis of 5-bromoUracil in aqueous solution. Z. Naturf. B 21, 643–6.CrossRefGoogle Scholar
Rothman, W. & Kearns, D. R. (1967). Triplet states of bromouracil and iodouracil. Photochem. & Photobiol. 6, 775–8.CrossRefGoogle Scholar
Rupert, C. S. (1961). Repair of ultraviolet damage in cellular DNA. J. cell. comp. Physiol. 58, Suppl. I, 5768.CrossRefGoogle Scholar
Rupp, W. D. & Howard-Flanders, P. (1968). Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. molec. Biol. 31, 291304.CrossRefGoogle Scholar
Rupp, W. D. & Prusoff, W. H. (1964). Incorporation of 5-iodo-2'-deoxy- uridine into bacteriophage T I as related to UV sensitization or protection. Nature, Lond. 202, 1288–90.CrossRefGoogle ScholarPubMed
Rupp, W. D. & Prusoff, W. H. (1965 a). Photochemistry of iodouracil. I. Photoproducts obtained in water. Biochem. biophys. Res. Commun. 18, 145–51.CrossRefGoogle ScholarPubMed
Ruup, W. D. & Prusoff, W. H. (1965b). Photochemistry of iodouracil. II. Effects of sulfur compounds, ethanol and oxygen. Biochem. biophys. Res. Commun. 18, 158–64.CrossRefGoogle Scholar
Rupp, W. D. & Prusoff, W. H. (1965 b). Photochemistry of iodouracil. II. Effects of sulfur compounds, ethanol and oxygen. Biochem. biophys. Res. Commun. 18, 158–64.CrossRefGoogle ScholarPubMed
Sauerbier, W. (1961). The influence of 5-bromodeoxyuridine substitution on UV sensitivity, host-cell reactivation, and photoreactivation in T I and P22H5. Virology 15, 465–72.CrossRefGoogle Scholar
Setlow, R. B. & Boyce, R. (1963). The action spectra for ultraviolet-light inactivation of systems containing 5-bromouracil-substituted deoxyribonucleic acid. II. Bacteriophage T4. Biochim. biophys. Acta 68, 455–61.CrossRefGoogle ScholarPubMed
Sharma, R. K. & Kharasch, N. (1968). The photolysis of iodoaromatic compounds. Angew. Chem. 7, 3644.CrossRefGoogle Scholar
Shugar, D. & Fox, J. J. (1952). Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. I. Pyrimidines. Biochim. biophys. Acta 9, 199218.CrossRefGoogle ScholarPubMed
Skavronskaya, A. G., Pokrovskii, V., Likhoded, L. Ya. & Gol'dina, L. R. (1968). Change in the mutagenic effect of ultraviolet light during incorporation of 5-bromouracil into bacterial DNA. Soy. Genet. 4, 491–5.Google Scholar
Smets, L. A. (1969). Repair incorporation of pyrimidine deoxynucleosides into DNA of mammalian cells exposed to UV light. Biophysik 6, 8593.CrossRefGoogle ScholarPubMed
Smets, L. A. & Cornelis, J. J. (1971). Repairable and irrepairable damage in 5-bromouracil-substituted DNA exposed to ultraviolet radiation. Int. J. Radiat. Biol. 19, 445–57.Google Scholar
Smith, K. C. (1963). Photochemical reaction of thymine, uracil, uridine, cytosine and bromouracil in frozen solution and in dried films. Photochem. & Photobiol. 2, 503–17.CrossRefGoogle Scholar
Smith, K. C. (1964). The photochemistry of thymine and bromouracil in vivo. Photochem. & Photobiol. 3, 110.CrossRefGoogle Scholar
Snyder, L. C., Shulman, R. G. & Neumann, D. B. (1970). Electronic structure of thymine. J. chem. Phys. 53, 256–67.CrossRefGoogle ScholarPubMed
Stahl, F. W., Crasemann, J. M., Okun, L., Fox, E. & Laird, C. (1961). Radiation-sensitivity of bacteriophage containing 5-bromodeoxyuridine. Virology 13, 98104.CrossRefGoogle Scholar
Stephan, G., Miltenburcer, H. G. & Hoyz, G. (1970). Ultraviolet induced strand breaks in 5-bromouracil substituted DNA of phage T I. Z. Naturf. B 25, 1037–42.CrossRefGoogle Scholar
Thorsett, G. & Hutchinson, F. (1971). Effects on bacterial transformation of single-strand breaks in DNA produced by deoxyribonuclease I and γ-rays. Biochim. biophys. Acta 238, 6774.CrossRefGoogle ScholarPubMed
Tikhomirova, L. P. (1970). Influence of 5-bromodeoxyuridrne incorporation into Sb phage DNA on the lethal and mutagenic effects of UV-irradiation. Mol. Biol. 4, 100–5.Google Scholar
Town, C. D., Smith, K. C. & Kaplan, H. S. (1971). DNA polymerase required for rapid repair of X-ray-induced DNA strand breaks in vivo. Science, N.Y. 172, 851–3.CrossRefGoogle ScholarPubMed
Trosko, J. E. & Brewen, J. C. (1967). Inhibition of ultraviolet-induced chromosome breaks by cysteamine in 5-bromouracil substituted mammalian cells. Radiat. Res. 32, 200–13.CrossRefGoogle ScholarPubMed
Voytek, P., Chang, P. K. & Prusoff, W. H. (1972). Kinetic and photochemical studies of 3-N-methyl-5-iodo-z -deoxyuridine. J. biol. Chem. 247, 367–72.CrossRefGoogle ScholarPubMed
Wacker, A. (1961). Strahlenchemische Veranderungen von Pyrimidinen in vivo und in vitro. J. Chim. phys. 58, 1041–5.CrossRefGoogle Scholar
Wacker, A. (1963). Molecular mechanisms of radiation effects. Prog. Nucleic Acid Res. I, 369–99.CrossRefGoogle Scholar
Wacker, A., Mennigmann, H.-D. & Szybalski, W. (1962). Effects of ‘visible’ light on 5-bromouracil-labelled DNA. Nature, Lond. 196, 685–6.CrossRefGoogle ScholarPubMed
Ward, J. & Kuo, I. (1970). The effects of radiation modifiers on sugar- phosphate bond breakage in deoxynucleotides irradiated in aqueous solution. IVth Int. Cong. Radiation Res., Evian, France.Google Scholar
Wolf, W. & Kharasch, N. (1961). Photolysis of aromatic iodo–compounds as a synthetic tool. J. org. Chem. 26, 283–4.CrossRefGoogle Scholar
Zimbrick, J. D., Waid, J. F. & Myers, L. S. (1969). Studies on the chemical basis of cellular radiosensitization by 5-bromouracil substitution in DNA. I. Pulse and steady state radiolysis of 5-bromouracil and thymine. Int. J. Radiat. Biol. 16, 505–23.Google ScholarPubMed