Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T05:28:21.002Z Has data issue: false hasContentIssue false

From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures

Published online by Cambridge University Press:  17 March 2009

Extract

All higher animals, whether they live in water or on dry land, are faced with the necessity of regulating rather closely their intake and excretion of salts and water in order to maintain the constancy of their internal ionic environment. The kidney is in general the most important organ of the body as far as the excretion of sodium, potassium, chloride and water is concerned, but there are other tissues which also play a part in controlling the ionic balance between the internal and external environments, such as the intestinal mucosa, the skin and urinary bladder in amphibia, the gill epithelium in fishes, the salt gland in marine birds, and the epithelium of the rumen in ruminants. In addition to excretory and absorptive organs of this type, there are others which are secretory and whose function involves the production of fluids differing in ionic composition from the blood plasma. Examples include the glands which secrete saliva and sweat, the oxyntic acid-producing cells of the gastric mucosa, and the epithelium of the stria vascularis which generates the potassium-rich endolymph of the mammalian cochlea. The purpose of this article is to consider briefly what is known about the active transport of salts and water across some typical multicellular secretory tissues, and to attempt in the process to discern what properties they have in common and in what respects they are specialized.

Type
Articles
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolph, E. F. (1933). Exchanges of water in the frog. Biol. Rev. 8, 224–40.CrossRefGoogle Scholar
Adrian, R. H. & Slayman, C. L. (1966). Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle. J. Physiol., Lond. 184, 9701014.CrossRefGoogle ScholarPubMed
Altamirano, M., Izaguirre, E. & Milgram, E. (1969). Osmotic concentration of the gastric juice of dogs. J. Physiol., Lond. 202, 283–96.CrossRefGoogle ScholarPubMed
Alvarado, R. H. & Kirschner, L. B. (1963). Osmotic and ionic regulation in Ambystoma tigrinum. Comp. Biochem. Physiol. 10, 5567.CrossRefGoogle ScholarPubMed
Anderson, E. & Harvey, W. R. (1966). Active transport by the Cecropia midgut. II. Fine structure of the midgut epithelium. J. Cell Biol. 31, 107–34.CrossRefGoogle ScholarPubMed
Ash, R. W. (1969). Plasma osmolality and salt gland secretion in the duck. Q. Jl exp. Physiol. 54, 6879.CrossRefGoogle ScholarPubMed
Ash, R. W. & Dobson, A. (1963). The effect of absorption on the acidity of rumen contents. J. Physiol., Lond. 169, 3961.CrossRefGoogle ScholarPubMed
Ash, R. W., Pearce, J. W. & Silver, A. (1969). An investigation of the nerve supply to the salt gland of the duck. Q. Jl exp. Physiol. 54, 281–95.CrossRefGoogle Scholar
Baillien, M. & Schoffeniels, E. (1961). Origine des potentiels bioélectriques de l'épithélium intestinal de la tortue Grecque. Biochim. biophys. Acta 53, 537–48.CrossRefGoogle Scholar
Baker, P. F., Blaustein, M. P., Manil, Jacqueline, Baker, P. F.Shaw, T. I. & Steinhardt, R. A. (1969). The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J. Physiol., Lond. 200, 459–96.CrossRefGoogle ScholarPubMed
Barry, B. A., Matthews, J. & Smyth, D. H. (1961). Transfer of glucose and fluid by different parts of the small intestine of the rat. J. Physiol., Lond. 157, 279–88.CrossRefGoogle ScholarPubMed
Barry, R. J. C., Dikstein, S., Matthews, J., Smyth, D. H. & Wright, E. M. (1964). Electrical potentials associated with intestinal sugar transfer. J. Physiol., Lond. 171, 316–38.CrossRefGoogle ScholarPubMed
Barry, R. J. C., Smyth, D. H. & Wright, E. M. (1965). Short-circuit current and solute transfer by rat jejunum. J. Physiol., Lond. 181, 410–31.CrossRefGoogle ScholarPubMed
Bayliss, W. M. (1915). Principles of General Physiology, p. 359. London: Longmans, Green.CrossRefGoogle Scholar
Békésy, G. Von (1952). DC resting potentials inside the cochlear partition. J. acoust. Soc. Am. 24, 72–6.CrossRefGoogle Scholar
Bentley, P. J. (1958). The effects of neurohypophysial extracts on water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J. Endocr. 17, 201–9.CrossRefGoogle ScholarPubMed
Bentley, P. J. (1966). The physiology of the urinary bladder of amphibia. Biol. Rev.. 41, 275316.CrossRefGoogle ScholarPubMed
Bentley, P. J. (1968). Action of amphotericin B on the toad bladder: evidence for sodium transport along two pathways. J. Physiol., Lond. 196, 703711.CrossRefGoogle ScholarPubMed
Bentley, P. J. & Heller, H. (1964). The action of neurohypophysial hormones on the water and sodium metabolism of urodele amphibians. J. Physiol., Lond. 171, 434–53.CrossRefGoogle ScholarPubMed
Berkowitz, J. M. & Janowitz, H. D. (1967). Secretion of sodium by the resting, stimulated, and inhibited canine gastric mucosa. Am. J. Physiol. 212,72–6.CrossRefGoogle ScholarPubMed
Berridge, M. J. (1968). Urine formation by the Malpighian tubules of Calliphora. I. Cations. J. exp. Biol. 48, 159–74.CrossRefGoogle ScholarPubMed
Berridge, M. J. (1969). Urine formation by the Malpighian tubules of Calliphora. II. Anions. J. exp. Biol. 50, 1528.CrossRefGoogle ScholarPubMed
Berridge, M. J. & Gupta, B. L. (1967). Fine-structural changes in relation to ion and water transport in the rectal papillae of the blowfly, Calliphora. J. Cell Sci. 2, 89112.CrossRefGoogle ScholarPubMed
Berridge, M. J. & Gupta, B. L. (1968). Fine-structural localization of adenosine triphosphatase in the rectum of Calliphora. J. Cell Sci. 3, 1732.CrossRefGoogle ScholarPubMed
Berridge, M. J. & Oschman, J. L. (1969). A structural basis for fluid secretion by Malpighian tubules. Tissue & Cell 1, 247–72.CrossRefGoogle ScholarPubMed
Biber, T. U. L., Chez, R. A. & Curran, P. F. (1966). Na transport across frog skin at low external Na concentrations. J. gen. Physiol.. 49, 1161–76.CrossRefGoogle ScholarPubMed
Bielawski, J. (1964.). Chloride transport and water intake into isolated gills of crayfish. Comp. Biochem. Physiol. 13, 423–32.CrossRefGoogle ScholarPubMed
Bihler, I. & Crane, R. K. (1962). Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars, in vitro, by various preparations of hamster small intestine. Biochim. biophys. Acta 59, 7893.CrossRefGoogle ScholarPubMed
Blair-West, J. R., Coghlan, J. P., Denton, D. A., Goding, J. R. & Wright, R. D. (1963). The effect of aldosterone, cortisol and corticosterone upon the sodium and potassium content of sheep's parotid saliva. J. din. Invest. 42, 484–96.Google ScholarPubMed
Bosher, S. K. & Warren, R. L. (1968). Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc. R. Soc. B 171, 227–47.Google Scholar
Bott, E., Blair-West, J. R., Coghlan, J. P., Denton, D. A. & Wright, R. D. (1966). The action of aldosterone on the lachrymal gland. Nature, Lond. 210, 102.CrossRefGoogle ScholarPubMed
Boulpaep, E. L. (1967). Ion permeability of the peritubular and luminal membrane of the renal tubular cell. Symposium über Transport und Funktion intracellulärer Elektrolyte, pp. 98107. Edited by Krück, F.. Munich: Urban and Schwarzenberg.Google Scholar
Bourguet, J. & Maetz, J. (1961). Arguments en faveur de l'indépendance des mécanismes d'action de divers peptides neurohypophysaires sur le flux osmotique d'eau et sur le transport actif de sodium au sein d'un même récepteur; études sur la vessie et la peau de Rana esculenta L. Biochim. biophys. Acta 52, 552–65.CrossRefGoogle Scholar
Bricker, N. S. & Klahr, S. (1966). Effects of dinitrophenol and oligomycin on the coupling between anaerobic metabolism and anerobic sodium transport by the isolated turtle bladder. J. gen. Physiol. 49, 483–99.CrossRefGoogle Scholar
Brinley, F. J. & Mullins, L. J. (1968). Sodium fluxes in internally dialyzed squid axons. J. gen. Physiol. 52, 181211.CrossRefGoogle ScholarPubMed
Brodsky, W. A. & Schilb, T. P. (1960). Electrical and osmotic characteristics of the isolated turtle bladder. J. clin. Invest. 39, 974.Google Scholar
Brodsky, W. A. & Schilb, T. P. (1965). Osmotic properties of isolated turtle bladder. Am. J. Physiol. 208, 4657.CrossRefGoogle ScholarPubMed
Brodsky, W. A. & Schilb, T. P. (1966). Ionic mechanisms for sodium and chloride transport across turtle bladders. Am. J. Physiol. 210, 987–96.CrossRefGoogle ScholarPubMed
Bruce, J., Goodall, E. D., Kay, R. N. B., Phillipson, A. T. & Vowles, L. E. (1966). The flow of organic and inorganic materials through the alimentary tract of the sheep. Proc. R. Soc. B 166, 4662.Google ScholarPubMed
Bryan, G. W. (1960). Sodium regulation in the crayfish Astacus fluviatilis. III. Experiments with NaC1-loaded animals. J. exp. Biol. 37, 113–28.CrossRefGoogle Scholar
Bulmer, M. G. & Forwell, G. D. (1956). The concentration of sodium in thermal sweat. J. Physiol., Lond. 132, 115–22.CrossRefGoogle ScholarPubMed
Burgen, A. S. V. (1958). The secretion of lithium in the saliva of the dog. Can. J. Biochem. Physiol. 36, 409–11.Google Scholar
Burgen, A. S. V. & Emmelin, N. G. (1961). Physiology of the Salivary Glands. London: Arnold.Google Scholar
Cage, G. W. & Dobson, R. L. (1965). Sodium secretion and reabsorption in the human eccrine sweat gland. J. din. Invest. 44, 1270–6.Google ScholarPubMed
Case, R. M., Harper, A. A. & Scratcherd, T. (1969). The secretion of electrolytes and enzymes by the pancreas of the anaesthetized cat. J. Physiol., Lond. 201, 335–48.CrossRefGoogle ScholarPubMed
Cereijido, N., Herrera, F. C., Flanigan, W. J. & Curran, P. F. (1964). The influence of Na concentration on Na transport across frog skin. J. gen. Physiol. 47, 879–93.CrossRefGoogle ScholarPubMed
Cereijido, M. & Rotunno, C. A. (1968). Fluxes and distribution of sodium in frog skin. A new model. J. gen. Physiol. 51, 280–9 S.CrossRefGoogle ScholarPubMed
Choi, J. K. (1963). The fine structure of the urinary bladder of the toad, Bufo marinus. J. Cell Biol. 16, 5372.CrossRefGoogle ScholarPubMed
Civan, M. M. & Frazier, H. S. (1968). The site of the stimulatory action of vasopressin on sodium transport in toad bladder. J. gen. Physiol. 51, 589605.CrossRefGoogle ScholarPubMed
Civan, M. M., Kedem, O. & Leaf, A. (1966). Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Am. J. Physiol. 211, 569–75.CrossRefGoogle ScholarPubMed
Clapp, J. R., Rector, F. C. & Seldin, D. W. (1962). Effect of unreabsorbed anions on proximal and distal transtubular potentials in rats. Am. J. Physiol. 202, 781–6.CrossRefGoogle ScholarPubMed
Clarkson, T. W. & Rothstein, A. (1960). Transport of monovalent cations by the isolated small intestine of the rat. Am. J. Physiol. 199, 898906.CrossRefGoogle ScholarPubMed
Clarkson, T.W., Rothstein, A. & Cross, A. (1961). Transportof monovalent anions by isolated small intestine of the rat. Am. J. Physiol. 200, 781–8.CrossRefGoogle Scholar
Clarkson, T. W. & Toole, S. R. (1964). Measurement of short-circuit current and ion transport across the ileum. Am. J. Physiol. 206, 658–68.CrossRefGoogle Scholar
Coast, G. M. (1969). Formation of urinary fluid by Malpighian tubules of an insect. J. Physiol., Lond. 202, 102–3 P.Google ScholarPubMed
Comar, C. L. & Bronner, F. (eds.) (1960). Mineral Metabolism: an Advanced Treatise, 2 vols. New York: Academic Press.Google Scholar
Cooperstein, I. L. & Hogben, C. A. M. (1959). Ionic transfer across the isolated frog large intestine. J. gen. Physiol. 42, 461–73.CrossRefGoogle ScholarPubMed
Copeland, D. E. (1964). A mitochondrial pump in the cells of the anal papillae of mosquito larvae. J. Cell. Biol. 23, 253–63.CrossRefGoogle ScholarPubMed
Copeland, D. E. (1968). Fine structure of salt and water uptake in the land-crab Gecarcinus lateralis. Am. Zool. 8, 417–32.CrossRefGoogle Scholar
Crabb£, J. (1961). Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J. clin. Invest. 40, 2103–10.CrossRefGoogle Scholar
Crane, R. K., Miller, D. & Bihler, I. (1960). The restrictions on possible mechanisms of intestinal active transport of sugars. In Membrane Transport and Metabolism, pp. 439–49. Eds. Kleinzeller, A. and Kotyk, A.. Prague: Czechoslovak Academy of Sciences.Google Scholar
Creese, R., Scholes, N. W. & Whalen, W. J. (1958). Resting potentials of diaphragm muscle after prolonged anoxia. J. Physiol., Lond. 140, 301–17.CrossRefGoogle ScholarPubMed
Croghan, P. C., Curra, R. A. & Lockwood, A. P. M. (1965). The electrical potential difference across the epithelium of isolated gills of the crayfish Austropotamobius pallipes (Lereboullet). J. exp. Biol. 42, 463–74.CrossRefGoogle ScholarPubMed
Cross, S. B., Keynes, R. D. & Rybova, R. (1965). The coupling of sodium efflux and potassium influx in frog muscle. J. Physiol., Lond. 181, 865–80.CrossRefGoogle ScholarPubMed
Curran, P. F. (1960). Na, Cl, and water transport by rat ileum in vitro. J. gen. Physiol. 43, 1137–48.CrossRefGoogle Scholar
Curran, P. F. & Cereijido, M. (1965). K fluxes in frog skin. J. gen. Physiol. 48, 1011–33.CrossRefGoogle ScholarPubMed
Curran, P. F., Schultz, S. G., Chez, R. A. & Fuisz, R. E. (1967). Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J. gen. Physiol. 50, 1261–86.CrossRefGoogle ScholarPubMed
Curran, P. F. & Solomon, A. K. (1957). Ion and water fluxes in the ileum of rats. J. gen. Physiol. 41, 143–68.CrossRefGoogle ScholarPubMed
Cuthbert, A. W. & Painter, E. (1968). Independent action of antidiuretic hormone, theophylline and cyclic 3',5'-adenosine monophosphate on cell membrane permeability in frog skin. J. Physiol., Lond. 199, 593612.CrossRefGoogle Scholar
Cuthbert, A. W. & Painter, E. (1969). Mechanism of action of aldosterone. Nature, Lond. 222, 280–1.CrossRefGoogle ScholarPubMed
Danielli, J. F., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1945). The mechanism of absorption from the rumen as exemplified by the behaviour of acetic, propionic and butyric acids, J. exp. Biol. 22, 7584.CrossRefGoogle ScholarPubMed
Darwin, C. (1839). Journal of Researches into the Geology and Natural History of the Various Countries Visited by H.M.S. ‘Beagle’ under the Command of Captain Fitzroy from 1832 to 1836, p. 464. London: Henry Colburn.Google Scholar
Davenport, H. W. (1963). Sodium space and acid secretion in frog gastric mucosa. Am. J. Physiol. 204, 213–6.CrossRefGoogle ScholarPubMed
Davenport, H. W. & Abbrecht, P. H. (1965). Potassium movement across serosal and mucosal surfaces of frog gastric mucosa. Am. J. Physiol. 208, 528–30.CrossRefGoogle ScholarPubMed
Davies, D. T. & White, J. C. D. (1960). The use of ultrafiltration and dialysis in isolating the aqueous phase of milk and in determining the partition of milk constituents between the aqueous and disperse phases. J. Dairy Res. 27, 171–90.CrossRefGoogle Scholar
Dejours, P. (1969). Variations of CO2 output of a fresh-water teleost upon change of the ionic composition of water. J. Physiol., Lond. 202, 113–14 P.Google ScholarPubMed
Denton, D. A. (1956). The effect of Na+ depletion on the Na+:K+ ratio of the parotid saliva of the sheep. J. Physiol., Lond. 131, 516–25.CrossRefGoogle ScholarPubMed
Denton, E. J. (1964). The buoyancy of marine molluscs. In Physiology of Mollusca, vol. I, ch. 13, pp. 425–34. Eds. Wilbur, K. M. and Yonge, C. M.. New York: Academic Press.CrossRefGoogle Scholar
Diamond, J. M. (1962 a). The reabsorptive function of the gall bladder. J. Physiol., Lond. 161, 442–73.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1962 b). The mechanism of solute transport by the gall bladder. J. Physiol., Lond. 161, 474502.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1962 c). The mechanism of water transport by the gall bladder. J. Physiol., Lond. 161, 503–27.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1964 a). Transport of salt and water in rabbit and guinea pig gall bladder. J. gen. Physiol. 48, 114.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1964 b). The mechanism of isotonic water transport. J. gen. Physiol. 48, 1542.CrossRefGoogle ScholarPubMed
Diamond, J. M. (1968). Transport mechanisms in the gall bladder. In Handbook of Physiology, Section 6: Alimentary Canal. Vol. v: Bile, Digestion, Ruminal Physiology, ch. 115, pp. 2451–82. Washington D.C.: American Physiological Society.Google Scholar
Diamond, J. M. & Bossert, W. H. (1967). Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. gen. Physiol. 50, 2061–83.CrossRefGoogle Scholar
Diamond, J. M. & Bossert, W. H. (1968). Functional consequences of ultra-structural geometry in ‘backwards’ fluid-transporting epithelia. J. Cell Biol. 37, 694702.CrossRefGoogle Scholar
Diamond, J. M. & Harrison, S. C. (1966). The effect of membrane fixed charges on diffusion potentials and streaming potentials. J. Physiol., Lond. 183, 3757.CrossRefGoogle ScholarPubMed
Diamond, J. M. & Tormey, J. McD. (1966). Studies on the structural basis of water transport across epithelial membranes. Fedn. Proc. 25, 1458–63.Google ScholarPubMed
Dietz, T. H., Kirschner, L. B. & Porter, D. (1967). The roles of sodium transport and anion permeability in generating transepithelial potential differences in larval salamanders. J. exp. Biol. 46, 8596.CrossRefGoogle ScholarPubMed
Dobson, A. & Phillipson, A. T. (1958). The absorption of chloride ions from the reticulo-rumen sac. J. Physiol., Lond. 140, 94104.CrossRefGoogle Scholar
Dobson, A. & Phillipson, A. T. (1968). Absorption from the ruminant fore-stomach. In Handbook of Physiology, Section 6: Alimentary Canal. Vol. v. Bile, Digestion, Ruminal Physiology, ch. 132. Washington, D.C.: American Physiological Society.Google Scholar
Doyle, W. L. (1960). The principal cells of the salt gland of marine birds. Expl Cell Res. 21, 386–93.CrossRefGoogle ScholarPubMed
Dunson, W. A. (1969). Electrolyte excretion by the salt gland of the Galapagos marine iguana. Am. J. Physiol. 216, 9951002.CrossRefGoogle ScholarPubMed
Durbin, R. P. (1964). Anion requirements for gastric acid secretion. J. gen. Physiol. 47, 735–48.CrossRefGoogle ScholarPubMed
Durbin, R. P. (1968). Utilization of high-energy phosphate compounds by stomach. J. gen. Physiol. 51, 233–9 S.CrossRefGoogle ScholarPubMed
Durbin, R. P., Frank, H. & Solomon, A. K. (1956). Water flow through frog gastric mucosa. J. gen. Physiol. 39, 535–51.CrossRefGoogle ScholarPubMed
Durbin, R. P. & Heinz, E. (1958). Electromotive chloride transport and gastric acid secretion in the frog. J. gen. Physiol. 41, 1035–47.CrossRefGoogle ScholarPubMed
Edelman, I. S. (1968). Aldosterone and sodium transport. In Functions of the Adrenal Cortex, vol. I, ch. 4. Ed. McKerns, K. W.. Amsterdam: North Holland.Google Scholar
Edmunds, M. (1968). Acid secretion in some species of Doridacea (Mollusca, Nudibranchia). Proc. malac. Soc. Lond. 38, 121–33.Google Scholar
Eggena, P., Schwartz, I. L. & Walter, R. (1968). A sensitive hydroosmotic toad bladder assay. J. gen. Physiol. 52, 465–81.CrossRefGoogle ScholarPubMed
Eigler, F. W. (1961). Short-circuit current measurements in proximal tubule of Necturus kidney. Am. J. Physiol. 201, 157–63.CrossRefGoogle ScholarPubMed
Emrich, H. M. & Ullrich, K. L. (1966). Ausscheidung verschiedener Stoffe im Schweiss in Abhängigkeit von der Schweissflussrate. Pflüg. Arch. ges. Physiol. 290, 298310.CrossRefGoogle Scholar
Engelhardt, W. Von (1963). Untersuchungen über die Regulierung des Wasserhaushaltes im Ziegenpansen. I. Pansenflüssigkeitsvolumen, Flüssigkeitsausfluss in den Psalter, Nettoflüssigkeitszufluss in den Pansen und Flüssigkeitsaustausch durch die Pansenwand. Pflüg. Arch. ges. Physiol. 278, 141–51.CrossRefGoogle Scholar
Essig, A. (1965). Active sodium transport in toad bladder despite removalof serosal potassium. Am. J. Physiol. 208, 401–6.CrossRefGoogle Scholar
Essig, A. & Leaf, A. (1963). The role of potassium in active transport of sodium by the toad bladder. J. gen. Physiol. 46, 505–15.CrossRefGoogle ScholarPubMed
Ewer, R. F. (1952). The effect of pituitrin on fluid distribution in Bufo regularis Reuss. J. exp. Biol. 29, 173–7.CrossRefGoogle Scholar
Farquhar, M. G. & Palade, G. E. (1963). Junctional complexes in various epithelia. J. Cell Biol. 17, 375412.CrossRefGoogle ScholarPubMed
Farquhar, M. G. & Palade, G. E. (1964). Functional organization of amphibian skin. Proc. natn. Acad. Sci. U.S.A. 51 569–77.CrossRefGoogle ScholarPubMed
Ferreira, H. G., Harrison, F. A. & Keynes, R. D. (1964). Studies with isolated rumen epithelium of the sheep. J. Physiol., Lond. 175, 2830P.Google Scholar
Ferreira, H. G., Harrison, F. A. & Keynes, R. D. (1966). The potential and short-circuit current across isolated rumen epithelium of the sheep. J. Physiol., Lond. 187, 631–44.CrossRefGoogle ScholarPubMed
Ferreira, H. G., Harrison, F. A., Keynes, R. D. & Nauss, A. H. (1966). Observations on the potential across the rumen of the sheep. J. Physiol., Lond. 187, 615–30.CrossRefGoogle ScholarPubMed
Ferreira, H. G. & Smith, M. W. (1968). Effect of a saline environment on sodium transport by the toad colon. J. Physiol., Lond. 198, 329–43.CrossRefGoogle ScholarPubMed
Fordtran, J. S. & Dietschy, J. M. (1966). Water and electrolyte movement in the intestine. Gastroenterology 50, 263–85.CrossRefGoogle ScholarPubMed
Forte, G. M., Limlomwongse, L. & Forte, J. G. (1969). The development of intracellular membranes concomitant with the appearance of HCl secretion in oxyntic cells of the metamorphosing bullfrog tadpole. J. Cell Sci. 4, 709–27.CrossRefGoogle ScholarPubMed
Forte, J. G. (1969). Three components of Cl flux across isolated bullfrog gastric mucosa. Am. J. Physiol. 216, 167–74.CrossRefGoogle ScholarPubMed
Forte, J. G., Adams, P. H. & Davies, R. E. (1965). Acid secretion and phosphate metabolism in bullfrog gastric mucosa. Biochim. biophys. Acta 104, 2538.CrossRefGoogle ScholarPubMed
Forte, J. G. & Davies, R. E. (1964). Relation between hydrogenion secretion and oxygen uptake by gastric mucosa. Am. J. Physiol. 206, 218–22.CrossRefGoogle Scholar
Forte, J. G., Forte, G. M. & Saltman, P. (1967). K+-stimulated phosphatase of microsomes from gastric mucosa. J. cell. comp. Physiol. 69, 293304.CrossRefGoogle ScholarPubMed
Frazier, H. S., Dempsey, E. F. & Leaf, A. (1962). Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J. gen. Physiol. 45, 529–43.CrossRefGoogle ScholarPubMed
Frazier, H. S. & Leaf, A. (1963). The electrical characteristics of active transport in the toad bladder. J. gen. Physiol. 46, 491503.CrossRefGoogle ScholarPubMed
Frederiksen, O. & Leyssac, P. P. (1969). Transcellular transport of isosmotic volumes by the rabbit gall-bladder in vitro. J. Physiol., Lond. 201, 201–24.CrossRefGoogle ScholarPubMed
Frömter, E. & Hegel, U. (1966). Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Rattenniere. Pflüg. Arch. ges.Physiol. 291, 107–20.CrossRefGoogle Scholar
Ganote, C. E., Grantham, J. J., Moses, H. L., Burg, M. B. & Orloff, J. (1968). Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell Biol. 36, 355–67.CrossRefGoogle ScholarPubMed
Romeu, F. García & Maetz, J. (1964). The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus. I. Evidence for an independent uptake of sodium and chloride ions. J. gen. Physiol. 47, 1195–207.CrossRefGoogle Scholar
Romeu, F. García & Salibián, A. (1968). Sodium uptake and ammonia excretion through the in vivo skin of the South American frog Leptodactylus ocellatus (L., 1758). Life Sci. 7, 465–70.CrossRefGoogle Scholar
Garrahan, P. J. & Glynn, I. M. (1967). The behaviour of the sodium pump in red cells in the absence of external potassium. J. Physiol., Lond. 192 159–74.CrossRefGoogle ScholarPubMed
Garrett, J. R. (1963). The ultrastructure of intracellular fat in the parenchyma of human submandibular salivary glands. Arch. oral Biol. 8, 729–34.CrossRefGoogle ScholarPubMed
Gatzy, J. T. & Clarkson, T. W. (1965). The effect of mucosal and serosal solution cations on bioelectric properties of the isolated toad bladder. J. gen. Physiol. 48, 647–71.CrossRefGoogle ScholarPubMed
Giebisch, G. (1961). Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J. gen. Physiol. 44, 659–78.CrossRefGoogle ScholarPubMed
Giebisch, G. (1968). Some electrical properties of single renal tubule cells. J.gen. Physiol. 51, 315–25S.CrossRefGoogle ScholarPubMed
Giebisch, G. & Windhager, E. E. (1963). Measurements of chloride movement across single proximal tubules of Necturus kidney. Am. J. Physiol. 204, 387–91.CrossRefGoogle ScholarPubMed
Giebisch, G. & Windhager, E. E. (1964). Renal tubular transferof sodium, chloride and potassium. Am. J. Med. 36, 643–69.CrossRefGoogle Scholar
Glynn, I. M. (1957). The action of cardiac glycosides on sodium and potassium movements in human red cells. J. Physiol., Lond. 136, 148–73.CrossRefGoogle ScholarPubMed
Goldner, A. M., Schultz, S. G. & Curran, P. F. (1969). Sodium and sugar fluxes across the mucosal border of rabbit ileum. J. gen. Physiol. 53, 362–83.CrossRefGoogle ScholarPubMed
Gonzalez, C. F., Shamoo, Y. E. & Brodsky, W. A. (1967). Electrical nature of active chloride transport across short-circuited turtle bladders. Am. J. Physiol. 212, 641–50.CrossRefGoogle ScholarPubMed
Grim, E. & Smith, G. A. (1957). Water flux rates across dog gall bladder wall. Am. J. Physiol. 191, 555–60.CrossRefGoogle Scholar
Grimstone, A. V., Mullinger, A. M. & Ramsay, J. A. (1968).Further studies on the rectal complex of the mealworm Tenebrio molitor, L. (Coleoptera, Tenebrionidae). Phil. Trans. R. Soc. B. 253, 343–82.Google Scholar
Hakim, A., Lester, R. G. & Lifson, N. (1963). Absorption by an in vitro preparation of dog intestinal mucosa. J. appl. Physiol. 18, 409–13.CrossRefGoogle Scholar
Harris, J. B. & Edelman, I. S. (1960). Transport of potassium by the gastric mucosa of the frog. Am. J. Physiol. 198, 280–4.CrossRefGoogle ScholarPubMed
Harris, J. B. & Edelman, I. S. (1964). Chemical concentration gradients and electrical properties of gastric mucosa. Am. J. Physiol. 206, 769–82.CrossRefGoogle ScholarPubMed
Harrison, F. A., Keynes, R. D. & Zurich, L. (1968). The active transport of chloride across the rumen epithelium of the sheep. J. Physiol., Lond. 194, 4849P.Google Scholar
Harvey, W. R., Haskell, J. A. & Nedergaard, S. (1968). Active transport by the Cecropia midgut. III. Midgut potential generated directly by active K-transport. J. exp. Biol. 48, 112.CrossRefGoogle Scholar
Harvey, W. R., Haskell, J. A. & Zerahn, K. (1967). Active transport of potassium and oxygen consumption in the isolated midgut of Hyalophora cecropia. J. exp. Biol. 46, 235248.CrossRefGoogle ScholarPubMed
Harvey, W. R. & Nedergaard, S. (1964). Sodium-independent active transport of potassium in the isolated midgut of the Cecropia silkworm. Proc. natn. Acad. Sci. U.S.A. 51, 757–65.CrossRefGoogle ScholarPubMed
Harvey, W. R. & Zerahn, K. (1969). Kinetics and route of active K-transport in the isolated midgut of Hyalophora cecropia. J. exp. Biol. 50, 297306.CrossRefGoogle ScholarPubMed
Hashimoto, K., Gross, B. G. & Lever, W. F. (1966). An electron microscopic study of the adult human apocrine duct. J. invest. Derm. 46, 611.CrossRefGoogle ScholarPubMed
Haskell, J. A., Clemons, R. D. & Harvey, W. R. (1965). Active transport by the Cecropia midgut. I. Inhibitors, stimulants, and potassium-transport. J. cell. comp. Physiol. 65, 4556.CrossRefGoogle ScholarPubMed
Haskell, J. A., Harvey, W. R. & Clark, R. M. (1968). Active transport by the Cecropia midgut. V. Loss of potassium transport during larval-pupal transformation. J. exp. Biol. 48, 2537.CrossRefGoogle ScholarPubMed
Hays, R. M. & Leaf, A. (1962). Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J. gen. Physiol. 45, 905–19.CrossRefGoogle ScholarPubMed
Heinz, E. & Durbin, R. P. (1958). Studies of the chloride transport in the gastric mucosa of the frog. J. gen. Physiol. 41, 101–17.CrossRefGoogle Scholar
Heinz, E. & Durbin, R. (1959). Evidence for an independent hydrogen-ion pump in the stomach. Biochim. biophys. Acta 31, 246–7.CrossRefGoogle ScholarPubMed
Heinz, E. & Öbrink, K. J. (1954) Acid formation and acidity control in the stomach. Physiol. Rev. 34, 643–73.CrossRefGoogle ScholarPubMed
Herrera, F. C. (1966). Action of ouabain on sodium transport in the toad urinary bladder. Am. J. Physiol. 210, 980–6.CrossRefGoogle ScholarPubMed
Herrera, F. C. (1968). Bioelectric properties and ionic content in toad bladder J. gen. Physiol. 51, 261–70 S.CrossRefGoogle ScholarPubMed
Hinojosa, R. & Rodriguez-Echandia, E. L. (1966). The fine structure of the stria vascularis of the cat inner ear. Am. J. Anat. 118, 631–64.CrossRefGoogle ScholarPubMed
Hodgkin, A. L. & Keynes, R. D. (1955). Active transport of cations in giant axons from Sepia and Loligo. J. Physiol., Lond. 128, 2860.CrossRefGoogle ScholarPubMed
Hogben, C. A. M. (1955) Active transport of chloride by isolated frog gastric epithelium. Origin of the gastric mucosal potential. Am. J. Physiol. 180, 641–9.Google ScholarPubMed
Hogben, C. A. M. (1968). Observations on ionic movement through the gastric mucosa. J. gen. Physiol. 51, 240–9S.CrossRefGoogle ScholarPubMed
Hokin, M. R. (1967). The Na+, K+, and Cl- content of goose salt gland slices and the effects of acetylcholine and ouabain. J. gen.Physiol. 50, 2197–209.CrossRefGoogle Scholar
Hollander, F. & Colcher, H. (1960). Evidence for the independence of K- and HC1-effiux into gastric secretion. Am. J. Physiol. 108, 729–36.CrossRefGoogle Scholar
Hollmann, K. H. & Verley, J. M. (1965). La glande sous-maxillaire de la souris et du rat. Etude au microscope electronique. Z. Zellforsch. mikrosk. Anat. 68, 363–88.CrossRefGoogle Scholar
Holmes, W. N. & McBean, R. L. (1964). Some aspects of electrolyte excretion in the green turtle, Chelonia mydas mydas. J. exp. Biol. 41, 8190.CrossRefGoogle ScholarPubMed
Hornby, R. & Thomas, S. (1969). Effect of prolonged saline exposure on sodium transport across frog skin. J. Physiol., Lond. 200, 321–44.CrossRefGoogle ScholarPubMed
House, C. R. (1963). Osmotic regulation in the brackish water teleost, Blennius pholis. J. exp. Biol. 40, 87104.CrossRefGoogle Scholar
Huf, E. (1935). Versuche über den Zusammenhang zwischen Stoffwechsel, Potentialbildung und Funktion der Froschhaut. Pflüg. Arch. ges. Physiol. 235, 655–73.CrossRefGoogle Scholar
Hughes, M. R. & Ruch, F. E. (1968). Sodium and potassium in the tears and salt gland secretion of saline acclimatized ducks. Abstr. XXIV Int. Physiol. Congr. Washington, D.C., p. 204.Google Scholar
Hydén, S. (1961). Observations on the absorption of inorganic ions from he reticulo-rumen of the sheep. LantbrHögsk. Annlr 27, 273–85.Google Scholar
Inoue, T. (1963). Nasal salt gland: independence of salt and water transport. Science, N. Y. 142, 1299–300.CrossRefGoogle ScholarPubMed
Ito, S. (1961). The endoplasmic reticulum of gastric parietal cells. J. biophys. biochem. Cytol. 11, 333–47.CrossRefGoogle ScholarPubMed
Johnstone, B. M. (1967), Genesis of the cochlear endolymphatic potential. Current Topics in Bioenergetics 2, 335–52.CrossRefGoogle Scholar
Johnstone, C. G., Schmidt, R. S. & Johnstone, B. M. (1963). Sodium and potassium in vertebrate cochlear endolymph as determined by flame microspectrophotometry. Comp. Biochem. Physiol. 9, 335–41.CrossRefGoogle ScholarPubMed
Jørgensen, C. B. (1950). The amphibian water economy, with special regard to the effect of neurohypophyseal extracts. Acta physiol. scand. 22, Suppl. 78, pp. 179.Google Scholar
Jørgensen, C. B., Levi, H. & Zerahn, K. (1954). On active uptake of sodium and chloride ions in anurans. Acta physiol. scand. 30, 178–90.CrossRefGoogle ScholarPubMed
Kafatos, F. C. (1968). The labial gland: a salt-secreting organ of saturniid moths. J. exp. Biol. 48, 435–53.CrossRefGoogle Scholar
Kamiya, M. & Utida, S. (1968). Changes in activity of sodium-potassium-activated adenosinetriphosphatase in gills during adaptation of the Japanese eel to sea water. Comp. Biochem. Physiol. 26, 675–85.CrossRefGoogle ScholarPubMed
Kaneko-Mohammed, S. & Hogben, C. A. M. (1964). Ionic fluxes of Rana pipiens stomach bathed by sulphate solutions. Am. J. Physiol. 207, 1173–6.CrossRefGoogle Scholar
Kasbekar, D. K. & Durbin, R. P. (1965). An adenosine triphosphatase from frog gastric mucosa. Biochim. biophys. Acta 105, 472–82.CrossRefGoogle ScholarPubMed
Katzin, L. I. (1940). The use of radioactive tracers in the determination of irreciprocal permeability of biological membranes. Biol. Bull. mar. biol. Lab., Woods Hole 79, 342.Google Scholar
Kay, R. N. B. (1960). The rate of flow and composition of various salivarysecretions in sheep and calves. J. Physiol., Lond. 150, 515–37.CrossRefGoogle ScholarPubMed
Keynes, R. D. (1963). Chloride in the squid giant axon. J. Physiol., Lond. 169, 690705.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Harrison, F. A. (1967). Some aspects of potassium metabolism in the ruminant. Vet. Rec. 81, 244–50.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Maisel, G. W. (1954). The energy requirement for sodium extrusion from a frog muscle. Proc. R. Soc. B 142, 383–92.Google ScholarPubMed
Keynes, R. D. & Steinhardt, R. A. (1968). The components of the sodium efflux in frog muscle. J. Physiol., Lond. 198, 581–99.CrossRefGoogle ScholarPubMed
Keynes, R. D. & Swan, R. C. (1959). The permeability of frog muscle fibres to lithium ions. J. Physiol., Lond. 147, 626–38.CrossRefGoogle ScholarPubMed
Keys, A. B. (1931). Chloride and water secretion and absorption by the gills of the eel. Z. vergl. Physiol. 15, 364–88.CrossRefGoogle Scholar
Keys, A. & Willmer, E. N. (1932). ‘Chloride secreting cells’ in the gills of fishes with special reference to the common eel. J. Physiol., Lond. 76, 368–78.CrossRefGoogle Scholar
Kidder, G. W., Curran, P. F. & Rehm, W. S. (1966). Interactions between cytochrome system and H ion secretion in bullfrog gastric mucosa. Am. J. Physiol. 211, 513–19.CrossRefGoogle Scholar
King, E. N. & Schoffeniels, E. (1969). ‘In vitro’ preparation of crab gill for use in ion transport studies. Archs int. Physiol. Biochem. 77, 105–11.Google ScholarPubMed
Kinney, V. R. & Code, C. F. (1964). Canine ileal chloride absorption: effect of carbonic anhydrase inhibitor on transport. Am. J. Physiol. 207, 9981004.CrossRefGoogle ScholarPubMed
Kirschner, L. B., Maxwell, R. & Fleming, D. (1960). Non-osmotic water movement across isolated frog skin. J. cell. comp. Physiol. 55, 267–73.CrossRefGoogle ScholarPubMed
Kitahara, S. (1967). Active transport of Na+ and C1-by in vitro nonsecreting cat gastric mucosa. Am. J. Physiol. 213, 819–23.CrossRefGoogle ScholarPubMed
Klahr, S. & Bricker, N. S. (1964). Na transport by isolated turtle bladder during anaerobiosis and exposure to KCN. Am. J. Physiol. 206, 1333–9.CrossRefGoogle ScholarPubMed
Klahr, S. & Bricker, N. S. (1965). Energetics of anerobic sodium transport by the fresh water turtle bladder. J. gen. Physiol. 48, 571–80.CrossRefGoogle Scholar
Knutsson, P.-G. (1964) Resorption of sodium and chloride ions from the udder milk after injection of sodium chloride solutions through the teat in the goat. Lantbr Högsk. Annlr 30, 506–15.Google Scholar
Koch, H. J. (1954). Cholinesterase and active transport of sodium chloridethrough the isolated gills of the crab Eriocheir sinensis (M. Edw). Colston Papers, vol. 7, pp.1527.Google Scholar
Koch, H. J. & Evans, J. (1956 a). On the influence of lithium on the uptake of sodium and potassium by the crab Eriocheir sinensis (M. Edw.). Meded. K. vlaam. Acad. Wet., Jaargang XVIII, no. 6.Google Scholar
Koch, H. J. & Evans, J. (1956 b). Influence of a basic dye, thionine, on the absorption of sodium by the cab. Eriocheir sinensis (M. Edw.). Meded. K. vlaam. Acad. Wet., Jarrgang XVIII, no.8.Google Scholar
Koch, H. J., Evans, J. & Schicks, E. (1954). The active absorption of inous by the isolated gills of the crab Eriocheir sinensis (M. Edw). Meded. K. vlaam. Acad. Wet., Jaargang XVI no.5.Google Scholar
Koefoed-Johnsen, V. & Ussing, H.H. (1958). The nature of the frog skin potential. Acta physiol. scand. 42, 298308.CrossRefGoogle ScholarPubMed
Koefoed-Johnsen, V., Levi, H. & Ussing, H. H. (1952). The mode of passage of chloride ions through the isolated frog skin. Acta physiol. scand. 25, 150–63.CrossRefGoogle Scholar
Koefoed-Johnsen, V., Ussing, H. H. & Zerahn, K. (1952). The origin of the short-circuit current in the adrenaline stimulated frog skin. Acta physiol.scand. 27, 3848.CrossRefGoogle ScholarPubMed
Kolinska, J. & Semenza, G. (1967). Studies on intestinal sucrase and on intestinal sugar transport. V. Isolation and properties of sucrase isomaltase from rabbit small intestine. Biochim. biophys. Acta 146, 181–95.CrossRefGoogle ScholarPubMed
Komnick, H. (1963). Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. Protoplasma 56, 274314.CrossRefGoogle Scholar
Komnick, H. (1965). Funktionelle Morphologie von Salzdrüsenzellen. In Sekretion und Exkretion: Funktionelle und morphologische Organisation der Zelle. 2. Wissenschaftliche Konferenz, 1965. Berlin: Springer.Google Scholar
Krogh, A. (1937 a). Osmotic regulation in fresh water fishes by active absorption of chloride ions. Z. vergl. Physiol. 24, 656–66.CrossRefGoogle Scholar
Krogh, A. (1937 b). Osmotic regulation in the frog (R. esculenta) by active absorption of chloride ions. Skand. Arch. Physiol. 76, 6074.CrossRefGoogle Scholar
Krogh, A. (1938). The active absorption of ions in some freshwater animals. Z. vergl. Physiol. 25, 335–50.CrossRefGoogle Scholar
Krogh, A. (1939). Osmotic Regulation in Aquatic Animals. Cambridge University Press.Google Scholar
Kuijpers, W. & Bonting, S. L. (1969). Studies on(Na+–K+)-activated ATPase. XXIV. Localisation and properties of ATPase in the inner ear of the guinea pig. Biochim. biophys. Ada 173, 477–85.CrossRefGoogle ScholarPubMed
Leaf, A., Anderso, J. & Page, L. B. (1958). Active sodium transport by the isolated toad bladder. J. gen. Physiol. 41, 657–68.CrossRefGoogle ScholarPubMed
Leaf, A., Page, L. B. & Anderson, J. (1959). Respiration and active sodium transport of isolated toad bladder. J. biol. Chem. 234,1625–9.CrossRefGoogle ScholarPubMed
Leaf, A. & Renshaw, A. (1957). Ion transport and respiration of isolated frog skin. Biochem. J. 65, 8290CrossRefGoogle ScholarPubMed
Leb, D. E., Hoshiko, T. & Lindley, B. D. (1965). Effects of alkali metal cations on the potential across toad and bullfrog urinary bladder. J.gen. Physiol. 48, 527–40.CrossRefGoogle ScholarPubMed
LeFevre, M. E., Gohmann, E. J. & Rehm, W. S. (1964). An hypothesis for discovery of inhibitors of gastric acid secretion. Am. J. Physiol. 207, 613–18.CrossRefGoogle ScholarPubMed
Lefevre, P. G. (1955). Active transport through animal cell membranes. Protoplasmatologia, vol. VIII, 7a. Wien: Springer.Google Scholar
Levi, H. & Ussing, H. H. (1949). Resting potential and ion movements in the frog skin. Nature, Lond. 164, 928.CrossRefGoogle ScholarPubMed
Linderholm, H. (1952). Active transport of ions through frog skin with special reference to the action of certain diuretics. Acta physiol. scand. 27, suppl. 97.Google Scholar
Linderholm, H. (1954). On the behaviour of the ‘sodium pump’ in frog skin at various concentrations of Na ions in the solution on the epithelial side. Acta physiol. scand. 31, 3661.CrossRefGoogle Scholar
Linzell, J. L. (1967). The effect of very frequent milking and of oxytocinon the yield and composition of milk in fed and fasted goats. J. Physiol., Lond. 190, 333–46.CrossRefGoogle Scholar
Lloyd, D. P. C. (1961). Action potential and secretory potential of sweat glands. Proc. natn. Acad. Sci. U.S.A. 47, 351–8.CrossRefGoogle ScholarPubMed
Lockwood, A. P. M. (1962). The osmoregulation of crustacea. Biol. Rev. 37, 257305.CrossRefGoogle Scholar
Lundberg, A. (1958). Electrophysiology of the salivary glands. Physiol. Rev. 38, 2140.CrossRefGoogle ScholarPubMed
Macrobbie, E. A. C. & Ussing, H. H. (1961). Osmotic behaviour of the epithelial cells of frog skin. Acta physiol. scand. 53, 348–65.CrossRefGoogle ScholarPubMed
Maddrell, S. H. P. (1969). Secretion by the Malpighian tubules of Rhodnius. The movements of ions and water. J. exp. Biol. (in the Press).Google Scholar
Maddrell, S. H. P., Pilcher, D. E. M. & Gardiner, B. O. C. (1969). Stimulatory effect of 5-hydroxytryptamine (serotonin) on secretion by Malpighian tubules of insects. Nature, Lond. 222, 784–5.CrossRefGoogle ScholarPubMed
Maddrell, S. H. P. & Treherne, J. E. (1967). The ultrastructure of the perineurium in two insect species, Carausius morosus and Periplaneta americana. J. Cell Sci. 2, 119–28.CrossRefGoogle ScholarPubMed
Maetz, J. (1956). Les échanges de sodium chez le Poisson Carassius auratus L. Action d'un inhibiteur de l'anhydrase carbonique. J. Physiol., Paris 48, 1085–99.Google Scholar
Maetz, J. (1963). Physiological aspects of neurohypophysial function in fishes with some reference to the amphibia. Symp. zool. Soc. Lond. 9, 107–40.Google Scholar
Maetz, J. (1968). Salt and water metabolism. In Perspectives in Endocrinology, Pp. 47162. Eds. Barrington, E. J. W. and Jørgensen, C. B.. New York: Academic Press.Google Scholar
Maetz, J. & Campanini, G. (1966). Potentiels transépithéliaux de la branchie d'Anguille in vivo en eau douce et en eau de mer. J. Physiol., Paris 58, 248–9.Google Scholar
Maetz, J. & Romeu, F. García (1964). The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus. II. Evidence for NH+4/Na+ and HCO3-/Cl- exchanges. J. gen. Physiol. 47, 1209–27.CrossRefGoogle Scholar
Maetz, J., Nibelle, J., Bornancin, M. & Motais, R. (1969). Action sur l'osmoregulation de l'anguille de divers antibiotiques inhibiteurs de la synthèse des proteines ou du renouvellement cellulaire. Comp. Biochem. Physiol. (in the Press).Google Scholar
Malnic, G., Klose, R. M. & Giebisch, G. (1966). Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am. J. Physiol. 211, 548–59.CrossRefGoogle ScholarPubMed
Maren, T. H. (1967). Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol. Rev. 47, 595781.CrossRefGoogle ScholarPubMed
Martin, D. W. & Diamond, J. M. (1966). Energetics of coupled active transport of sodium and chloride. J. gen. Physiol. 50, 295315.CrossRefGoogle ScholarPubMed
Martinez, J. R., Holzgreve, H. & Frick, A. (1966). Micropuncture study of submaxillary glands of adult rats. Pflüg. Arch. ges. Physiol. 290, 124–33.CrossRefGoogle ScholarPubMed
Maude, D. L., Shehadeh, I. & Solomon, A. K. (1966). Sodium and water transport in single perfused distal tubules of Necturus kidney. Am. J. Physiol. 211, 1043–9.CrossRefGoogle ScholarPubMed
Meyer, K. H. & Bernfeld, P. (1946). The potentiometric analysis of membrane structure and its application to living animal membranes. J. gen. Physiol. 29, 353–78.CrossRefGoogle ScholarPubMed
Motais, R. (1967). Les mécanismes d'échanges ioniques branchiaux chez les téléostéens. Annls Inst. océanogr., Monaco, 45, 184.Google Scholar
Motais, R., Romeu, F. García & Maetz, J. (1966). Exchange diffusion effect and euryhalinity in teleosts. J. gen. Physiol. 50, 391422.CrossRefGoogle ScholarPubMed
Motais, R., Isaia, J., Rankin, J. C. & Maetz, J. (1969). Adaptive changes of the water permeability of the teleostean gill epithelium in relation to external salinity. J. exp. Blol. (in the Press).CrossRefGoogle Scholar
Motais, R. & Maetz, J. (1964). Action des hormones neurohypophysaires sur les échanges de sodium (mesurés à l'aide du radiosodium 24Na) chez un téléostéen euryhalin: Platichthys flesus L. Gen. comp. Endocr. 4, 210–24.CrossRefGoogle Scholar
Nakagawa, H., Klahr, S. & Bricker, N. S. (1967). Sodium transport by isolated epithelium of the urinary bladder of the freshwater turtle. Am. J. Physiol. 213, 1565–9.CrossRefGoogle ScholarPubMed
Nedergaard, S. & Harvey, W. R. (1968). Active transport by theCecropia midgut. IV. Specificity of the transport mechanism for potassium. J. exp. Biol. 48, 1324.CrossRefGoogle ScholarPubMed
Newey, H., Parsons, B. J. & Smyth, D. H. (1959). The site of action of phlorrhizin in inhibiting intestinal absorption of glucose. J. Physiol., Lond. 148, 8392.CrossRefGoogle ScholarPubMed
Newstead, J. D. (1967). Fine structure of the respiratory lamellae of teleostean gills. Z. Zettforsch. mikrosk. Anat. 79, 396428.CrossRefGoogle ScholarPubMed
Poy, R. K. F. Pak & Bentley, P. J. (1960). Fine structure of the epithelial cells of the toad urinary bladder. Expl Cett Res. 20, 235–7.CrossRefGoogle Scholar
Parry, G. & Potts, W. T. W. (1965). Sodium balance in the freshwater prawn, Palaemonetes antennarius. J. exp. Biol. 42, 415–21.CrossRefGoogle Scholar
Parsons, D. S. (1956). The absorption of bicarbonate-saline solutions by the small intestine and colon of the white rat. Q. Jl exp. Physiol. 41, 410–20.CrossRefGoogle Scholar
Parsons, D. S. & Wingate, D. L. (1961). The effect of osmotic gradients on fluid transfer across rat intestine in vitro. Biochim. biophys. Acta 46, 170–83.CrossRefGoogle ScholarPubMed
Parthasarathy, D. & Phillipson, A. T. (1953). The movement of potassium, sodium, chloride and water across the rumen epithelium of the sheep. J. Physiol., Lond. 121, 452–69.CrossRefGoogle ScholarPubMed
Peachey, L. D. & Rasmussen, H. (1961). Structure of the toad's urinary bladder as related to its physiology. J. biophys. biochem. Cytol. 10, 529–53.CrossRefGoogle ScholarPubMed
Petersen, O. H. & Poulsen, J. H. (1969). Secretory transmembrane potentials and electrolyte transients in salivary glands. In The Exocrine Glands. Ed. Botelho, S. Y.. Philadelphia: University of Pennsylvania Press.Google Scholar
Petrik, P. (1968). The demonstration of chloride ions in the ‘chloride cells’ of the gills of eels (Anguilla anguilla L.) adapted to sea water. Z. Zetlforsch. mikrosk. Anat. 92, 422–7.CrossRefGoogle ScholarPubMed
Phillips, J. E. (1964 a). Rectal absorption in the desert locust, Schistocerca gregaria Forskal. I. Water. J. exp. Biol. 41, 1538.CrossRefGoogle ScholarPubMed
Phillips, J. E. (1964 b). Rectal absorption in the desert locust, Schistocerca gregaria Forskal. II. Sodium, potassium and chloride.J. exp Biol. 41 3967CrossRefGoogle Scholar
Phillips, J. E. & Meredith, J. (1969). Active sodium and chloride transport by anal papillae of a salt water mosquito larva (Aedes campestris). Nature, Lond. 222, 168–9.CrossRefGoogle ScholarPubMed
Philpott, C. W. (1966). Halide localization in the teleost chloride cell and its identification by selected area electron diffraction. Direct evidence supporting an osmo-regulatory function for the sea-water adapted cell of Fundulus. Protoplasma, 60, 723.CrossRefGoogle Scholar
Philpott, C. W. & Copeland, D. E. (1963). Fine structure of chloride cells from three species of Fundulus. J. Cell Biol. 18, 389404.CrossRefGoogle ScholarPubMed
Pinsker, H. & Kandel, E. R. (1969). Synaptic activation of an electrogenic sodium pump. Science, N. Y. 163, 931–5.CrossRefGoogle ScholarPubMed
Pitts, R. F. (1964). Renal production and excretion of ammonia. Am. J. Med. 36, 720–42.CrossRefGoogle ScholarPubMed
Potts, W. T. W. & Parry, G. (1964). Osmotic and Ionic Regulation in Animals. London: Pergamon.Google Scholar
Preyer, W. (1866). Ueber das für Speichel gehaltene Sekret von Dolium galea. Sitz. Ber. niederrhein. Ges. Natur. Heilkunde in Bonn, pp. 6–9.Google Scholar
Pütter, A. (1911). Vergleichende Physiologie. Jena: Fischer.Google Scholar
Ramsay, J. A. (1949). A new method of freezing-point determination for small quantities. J. exp. Biol. 26, 5764.CrossRefGoogle ScholarPubMed
Ramsay, J. A. (1951). Osmotic regulation in mosquito larvae: the role of the Malpighian tubules. J. exp. Biol. 28, 6273.CrossRefGoogle ScholarPubMed
Ramsay, J. A. (1952). The excretion of sodium and potassium by the Malpighian tubules of Rhodnius. J. exp. Biol. 29, 110–26.CrossRefGoogle Scholar
Ramsay, J. A. (1953). Active transport of potassium by the Malpighian tubules of insects. J. exp. Biol. 30, 358–69.CrossRefGoogle Scholar
Ramsay, J. A. (1954) Active transport of water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae). J. exp. Biol. 31, 104–13.CrossRefGoogle Scholar
Ramsay, J. A. (1956). Excretion by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae): calcium, magnesium, chloride, phosphate andhydrogen ions. J. exp. Biol. 33, 697708.CrossRefGoogle Scholar
Ramsay, J. A. (1958). Excretion by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae): amino acids, sugars and urea. J. exp. Biol. 35, 871–91.CrossRefGoogle Scholar
Ramsay, J. A. (1964). The rectal complex of the mealworm Tenebrio molitor, L. (Coleoptera, Tenebrionidae). Phil. Trans. R. Soc. B 248, 279314.Google Scholar
Ramsay, J. A., Falloon, S. W. H. W. & Machin, K. E. (1951). An integrating flame photometer for small quantities. J. Scient. Instrum. 28, 7580.CrossRefGoogle Scholar
Rang, H. P. & Ritchie, J. M. (1968). On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol., Lond. 196, 183221.CrossRefGoogle ScholarPubMed
Rankin, J. C. (1969). Sodium exchange across a perfused teleostean gill preparation. Effects of ouabain and ethacrynic acid (in the press).Google Scholar
Rehm, W. S. (1968). The metabolic state and the response of the potential of frog gastric mucosa to changes in external ion concentrations. J. gen. Physiol. 51, 250–60S.CrossRefGoogle ScholarPubMed
Rehm, W. S., Davis, T. L., Chandler, C., Gohmann, E. & Bashirelahi, A. (1963). Frog gastric mucosae bathed in chloride-free solutions. Am. J. Physiol. 204, 233–42.CrossRefGoogle ScholarPubMed
Rehm, W. S. & LeFevre, M. E. (1965). Effect of dinitrophenol on potential, resistance, and H+ rate of frog stomach. Am. J. Physiol. 208, 922–30.CrossRefGoogle Scholar
Richterich, R. & Friolet, B. (1963). The effect of acetazolamide on sweat electrolytes in mucoviscidosis. Metabolism 12, 1112–21.Google ScholarPubMed
Robinson, S. & Robinson, A. H. (1954). Chemical composition of sweat. Physiol. Rev. 34, 202–20.CrossRefGoogle ScholarPubMed
Rothschild, Lord & Barnes, H. (1954). Constituents of bull seminal plasma. J. exp. Biol. 31, 561–72.CrossRefGoogle Scholar
SalibiÁn, A., Pezzani-HernÁndez, S. & Romeu, F. García (1968). In vivo ionic exchange through the skin of the South American frog, Leptodactylus ocellatus. Comp. Biochem. Physiol. 25, 311–7.CrossRefGoogle ScholarPubMed
Sawyer, W. H. & Schisgall, R. M. (1956). Increased permeability of the frog bladder to water in response to dehydration and neurohypophysial extracts. Am. J. Physiol. 187, 312–14.CrossRefGoogle ScholarPubMed
Schilb, T. P. & Brodsky, W. A. (1966). Acidification of mucosal fluid by transport of bicarbonate ion in turtle bladders. Am. J. Physiol. 210, 9971008.CrossRefGoogle ScholarPubMed
Schmidt, R. S. (1963). Types of endolymphatic potentials. Comp. Biochem. Physiol. 10, 83–7.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, B. & Davis, L. E. (1968). Fluid transport andtubular intercellular spaces in reptilian kidneys. Science, N. Y. 159, 1105–8.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K. (1960). The salt-secreting gland of marine birds. Circulation 21, 955–67.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K (1964). Desert Animals. Physiological Problems of Heat and Water. Oxford University Press.Google Scholar
Schmidt-Nielsen, K. (1969). The neglected interface: the biology of water as a liquid-gas system. Q. Rev. Biophys, 2, 283304.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K.Borut, A., Lee, P. & Crawford, E. (1963). Nasal salt excretion and the possible function of the cloaca in water conservation. Science, N.Y. 142, 1300–1.CrossRefGoogle Scholar
Schneyer, L. H. & Schneyer, C. A. (eds.) (1967). Secretory Mechanisms of Salivary Glands. New York: Academic Press.Google Scholar
Schoffeniels, E. & Tercafs, R. R. (1962). Potential differenceand net flux of water in the isolated amphibian skin. Biochem. Pharmacol. 11, 769–78.CrossRefGoogle Scholar
Schultz, S. G. & Curran, P. F. (1968). Intestinal absorption of sodium chloride and water. Handbook of Physiology. Section 6: Alimentary Canal. Vol. III. Intestinal Absorption, ch. 66. Washington, D.C.: American Physiological Society.Google Scholar
Schultz, S. G. & Zalusky, R. (1964 a). Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes. J. gen. Physiol. 47, 567–84.CrossRefGoogle ScholarPubMed
Schultz, S. G. & Zalusky, R. (1964 b). Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport.J. gen. Physiol. 47, 1043–59.CrossRefGoogle ScholarPubMed
Schultz, S. G. & Zalusky, R. (1965). Interactions between active sodium transport and active amino-acid transport in isolated rabbit ileum. Nature, Lond. 205, 292–4.CrossRefGoogle ScholarPubMed
Schultz, S. G., Zalusky, R. & Gass, A. E. (1964). Ion transport in isolated rabbit ileum. III. Chloride fluxes. J. gen. Physiol. 48, 375–8.CrossRefGoogle Scholar
Sedar, A. W. (1961 a). Electron microscopy of the oxyntic cell in the gastric glands of the bullfrog (Rana catesbiana). I. The non-acid-secreting gastric mucosa. J. biophys. biochem. Cytol. 9, 118.CrossRefGoogle ScholarPubMed
Sedar, A. W. (1961 b). Electron microscopy of the oxyntic cell in the gastric glands of the bullfrog, Rana catesbiana. II. The acid-secreting gastric mucosa. J. biophys. biochem. Cytol. 10, 4757.CrossRefGoogle ScholarPubMed
Sedar, A. W. & Forte, J. G. (1964). Effects of calcium depletion on the junctional complex between oxyntic cells of gastric glands. J. Cell Biol.22, 173–88.CrossRefGoogle ScholarPubMed
Sedar, A. W. & Friedman, M. H. F. (1961). Correlation of the fine structure of the parietal cell (dog) with functional activity of the stomach. J. biophys. biochem. Cytol. 11, 349–63.CrossRefGoogle ScholarPubMed
Sharp, G. W. G. & Leaf, A. (1965). Metabolic requirements for active sodium transport stimulated by aldosterone. J. biol. Chem. 240, 4816–21.CrossRefGoogle ScholarPubMed
Sharp, G. W. G. & Leaf, A. (1966). Mechanism of action of aldosterone. Physiol. Rev. 46, 593633.CrossRefGoogle ScholarPubMed
Sharp, G. W. G. & Leaf, A. (1968). On the stimulation of sodiumtransport by aldosterone. J. gen. Physiol. 51, 271–9S.CrossRefGoogle Scholar
Shaw, J. (1955). Ionic regulation and water balance in the aquatic larva of Sialis lutaria. J. exp. Biol. 32, 353–82.CrossRefGoogle Scholar
Shaw, J. (1959) The absorption of sodium ions by the crayfish, Astacus pallipes Lereboullet. I. The effect of external and internal sodium concentrations. J. exp. Biol. 36, 126–44.CrossRefGoogle Scholar
Shaw, J. (1960 a). The absorption of sodium ions by the crayfish, Astacus pallipes Lereboullet. II. The effect of the external anion. J. exp. Biol. 37, 534–47.CrossRefGoogle Scholar
Shaw, J. (1960 b). The absorption of sodium ions by the crayfish, Astacus pallipes Lereboullet. III. The effect of other cations in the external solution. J. exp. Biol. 37, 548–56.CrossRefGoogle Scholar
Shaw, J. (1960 c). The absorption of chloride ions by the crayfish, Astacus, pallipes Lereboullet. J. exp. Biol. 37, 557–72.CrossRefGoogle Scholar
Sjöstrand, F. S. (1963). The ultrastructure of the plasma membrane ofcolunmar epithelium cells of the mouse intestine. J. Ultrastruct. Res. 8, 517–41.CrossRefGoogle Scholar
Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. biophys. Acta 23, 394410.CrossRefGoogle Scholar
Slegers, J. F. G. (1968). Ionic secretion by epithelial membranes. InCystic Fibrosis, pp. 6585. Ed. Porter, R. and O'Connor, M.. London: Churchill.Google Scholar
Slegers, J. F. G. & Moons, W. M. (1968). Effect of acetazolamide on the chloride shift and the sodium pump in secretory cells. Nature, Lond. 220, 181–2.CrossRefGoogle ScholarPubMed
Smith, C. A., Lowry, O. H. & Wu, M. L. (1954). Electrolytes of labyrinthine fluids. Laryngoscope, St Louis 64, 141–53.CrossRefGoogle ScholarPubMed
Smith, H. W. (1930). The absorption and excretion of water and salts by marine teleosts. Am. J. Physiol. 93, 480505.CrossRefGoogle Scholar
Smith, M. W. (1964). The in vitro absorption of water and solutes from the intestine of goldfish, Carassius auratus. J. Physiol., Lond. 175, 3849.CrossRefGoogle ScholarPubMed
Sohal, R. S. & Copeland, E. (1966). Ultrastructural variationsin the anal papillae of Aëdes aegypti (L.) at different environmental salinities. J. Insect Physiol. 12, 429–39.CrossRefGoogle Scholar
Sperber, I. & Hydén, S. (1952). Transport of chloride through the ruminal mucosa. Nature, Lond. 169, 587.CrossRefGoogle ScholarPubMed
Sreebny, L. M. & Maeyer, J. (1964). Editors of Salivary Glands and their Secretions. Oxford: Pergamon Press.Google Scholar
Staaland, H. (1967). Temperature sensitivity of the avian salt gland.Comp. Biochem. Physiol. 23, 991–3.CrossRefGoogle ScholarPubMed
Steen, W. B. (1929). On the permeability of the frog's bladder to water. Anat. Rec. 43, 215220.CrossRefGoogle Scholar
Steinbach, H. B. (1967 a). On the ability of isolated frog skin to manufacture Ringer's fluid. J. gen. Physiol. 50, 2377–89.CrossRefGoogle ScholarPubMed
Steinbach, H. B. (1964 b). Movement of Na and K across and within frog skin. Am. J. Physiol. 212, 371–5.CrossRefGoogle Scholar
Stevens, C. E. (1964). Transport of sodium and chloride by the isolated rumen epithelium. Am. J. Physiol. 206, 1099–105.CrossRefGoogle ScholarPubMed
Stevens, C. E., Dobson, A. & Mammano, J. H. (1969). A trans-epithelial pump for weak electrolytes. Am. J. Physiol. 216, 983–7.CrossRefGoogle Scholar
Stevens, C. E. & Stettler, B. K. (1966 a). Factors affecting the transport of volatile fatty acids across rumen epithelium. Am. J. Physiol. 210, 365–72.CrossRefGoogle ScholarPubMed
Stevens, C. E. & Stettler, B. K. (1966 b). Transport of fatty acid mixtures across rumen epithelium. Am. J. Physiol. 211, 264–71.CrossRefGoogle ScholarPubMed
Stevens, C. E. & Stettler, B. K. (1967). Evidence for active transport of acetate across bovine rumen epithelium. Am. J. Physiol. 213, 1335–9.CrossRefGoogle ScholarPubMed
Stobbart, R. H. (1959). Studies on the exchange and regulation of sodium in the larva of Aëdes aegypti (L.). I. The steady-state exchange. J. exp. Biol. 36, 641–53.CrossRefGoogle Scholar
Stobbart, R. H. (1960). Studies on the exchange and regulation of sodium in the larva of Aëdes aegypti (L.). II. The net transport and the fluxes associated with it. J. exp. Biol. 37, 594608.CrossRefGoogle Scholar
Stobbart, R. H. (1965). The effect of some anions and cations upon the fluxes and net uptake of sodium in the larva of Aëdes aegypti (L.). J. exp. Biol. 42, 2943.CrossRefGoogle Scholar
Stobbart, R. H. (1967). The effect of some anions and cations upon the fluxes and net uptake of chloride in the larva of Aëdes aegypti (L.), and the nature ofthe uptake mechanisms for sodium and chloride. J. exp. Biol. 47, 3557.CrossRefGoogle Scholar
Stobbart, R. H. (1968). Ion movements and water transport in the rectum ofthe locust Schistocerca gregaria. J. Insect Physiol. 14, 269–75.CrossRefGoogle Scholar
Sullivan, W. J. (1968). Electric potential differences across distal renaltubules of Amphiuma. Am. J. Physiol. 214, 1096–103.CrossRefGoogle Scholar
Templeton, J. R. (1964). Nasal salt excretion in terrestrial lizards.Comp. Biochem. Physiol. 11, 223–9.CrossRefGoogle ScholarPubMed
Templeton, J. R. (1966). Responses of the lizard nasal salt gland to chronic hypersalemia. Comp. Biochem. Physiol. 18, 563–72.CrossRefGoogle Scholar
Ternouth, J. H. (1967). Post-prandial ionic and water exchange in the rumen. Res. vet. Sci. 8, 283–93.CrossRefGoogle ScholarPubMed
Thesleff, S. & Schmidt-Nielsen, K. (1962). An electrophysiological study of the salt gland of the herring gull. Am. J. Physiol. 202, 597600.CrossRefGoogle ScholarPubMed
Thompson, T. E. (1960). Defensive acid-secretion in marine gastropods. J. mar. biol. Ass. U.K. 39, 115–22.CrossRefGoogle Scholar
Thompson, T. E. (1961). Acid-secretion in British cowries. Proc.malac. Soc. Lond. 34, 210–11.Google Scholar
Thompson, T. E. (1965). Epidermal acid-secretion in some marine polyclad turbellaria. Nature, Lond. 206, 954–5.CrossRefGoogle Scholar
Thompson, T. E. & Slinn, D. J. (1959). On the biology of the opisthobranch Pleurobranclzus membranaceus. J. mar. Biol. Ass. U.K. 38, 507–24.CrossRefGoogle Scholar
Threadgold, L. T. & Houston, A. H. (1964). An electron microscope study of the ‘chloride cell’ of Salmo salar L. Expl Cell Res. 34, 123.CrossRefGoogle ScholarPubMed
Thuet, P., Motais, R. & Maetz, J. (1968). Les mécanismes de l'euryhalinité chez le crustace des salines Artemia salina L. Comp. Biochem. Physiol. 26, 793818.CrossRefGoogle Scholar
Torelli, G., Milla, E., Faelli, A. & Costantini, S. (1966). Energy requirement for sodium reabsorption in the in vivo rabbit kidney. Am. J. Physiol. 211, 576–80.CrossRefGoogle ScholarPubMed
Tormey, J. McD. & Diamond, J. M. (1967). The ultrastructural route of fluid transport in rabbit gall bladder. J. gen. Physiol. 50, 2031–60.CrossRefGoogle ScholarPubMed
Treherne, J. E. 1954. The exchange of labelled sodium in the larva of Aedes aegypti L. J. exp. Biol. 31, 386401.CrossRefGoogle Scholar
Treherne, J. E. & Maddrell, S. H. P. (1967). Axonal function and ionic regulation in the central nervous system of a phytophagous insect (Carausius morosus). J. exp. Biol. 47, 235–47.CrossRefGoogle ScholarPubMed
Ussing, H. H.(1949 a). The active ion transport through the isolated frog skin in the light of tracer studies. Acta physiol. scand. 17, 137.CrossRefGoogle ScholarPubMed
Ussing, H. H. (1949 b). The distinction by means of tracers between active transport and diffusion. Acta physiol. scand. 19, 4356.CrossRefGoogle Scholar
Ussing, H. H. (1965). Transport of electrolytes and water across epithelia. Harvey Lect. no. 59, 130.Google ScholarPubMed
Ussing, H. H. (1966). Anomalous transport of electrolytes and sucrose through the isolated frog skin induced by hypertonicity of the outside bathing solution. Ann. N.Y. Acad. Sci. 137, 543–55.CrossRefGoogle ScholarPubMed
Ussing, H. H. (1969). The interpretation of tracer fluxes in terms of membrane structure. Q. Rev. Biophys. 1, 365–76.CrossRefGoogle ScholarPubMed
Ussing, H. H., Kruhøffer, P., Thaysen, J. H. & Thorn, N. A. (1960). The alkali metals in biology. Handbuch der experimentellen Pharmakologie, vol. XIII. Berlin: Springer.Google Scholar
Ussing, H. H. & Windhager, E. E. (1964). Nature of shunt pathand active sodium transport path through frog skin epithelium. Acta physiol. scand. 61 484504.Google Scholar
Ussing, H. H. & Zerahn, K. ( 1951). Active transport of sodiumas the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand. 23, 110–27.CrossRefGoogle Scholar
Villegas, L. & Sananes, L. (1968). Independence between ionic transport and net water flux in frog gastric mucosa. Am. J. Physiol. 214, 9971000.CrossRefGoogle ScholarPubMed
Visscher, M. B., Fetcher, E. S., Carr, C. W., Gregor, H. P., Bushey, M. S. & Barker, D. E. (1944). Isotopic tracer studies on themovement of water and ions between intestinal lumen and blood. Am. J. Physiol. 142 550–75.CrossRefGoogle Scholar
Voûte, C. L. & Ussing, H. H. (1968). Some morphological aspects of active sodium transport. J. Cell Biol. 36, 625–38.CrossRefGoogle ScholarPubMed
Wall, B. J. (1968). In Session II: Discussion. Osmoregulation and water balance. Am. Zool. 8, 443–5.Google Scholar
Weber, H. (1927). Der Darm von Dolium galea L., eine vergleichend anatomische Untersuchung unter besonderer Berücksichtigung der Tritonium-Arten. Z. Morph. Ökol. Tiere 8 663804.CrossRefGoogle Scholar
Weiner, J. S. & Hellman, K. (1960). The sweat glands. Biol. Rev. 35, 141–86.CrossRefGoogle Scholar
Whitlock, R. T. & Wheeler, H. O. (1967). Anion transport by isolated rabbit gall bladders. Am. J. Physiol. 213, 1199–204.CrossRefGoogle ScholarPubMed
Whittembury, G. (1968). Sodium and water transport in kidney proximalb tubular cells. J. gen. Physiol. 51, 303–14S.CrossRefGoogle ScholarPubMed
Whittembury, G., Sugino, N. & Solomon, A. K. (1961). Ionic permeability and electric potential differences in Necturus kidney cells. J. gen. Physiol. 44 689712.CrossRefGoogle ScholarPubMed
Whittembury, G. & Windhager, E. E. (1961). Electrical potential difference measurements in perfused single proximal tubules of Necturus kidney. J. gen. Physiol., 44, 679–87.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. (1932). On the function of the so-called ‘rectal glands’ of insects. Q. Jl microsc. Sci. 75, 131–50Google Scholar
Wigglesworth, V. B. (1933). The function of the anal gills of the mosquitolarva. J. exp. Biol. 10, 1626.CrossRefGoogle Scholar
Windhager, E. E. (1968). Micropuncture Techniques and Nephron Function. London: Butterworths.Google Scholar
Windhager, E. E. (1969). Kidney, water, and electrolytes. A. Rev. Physiol. 31, 117–72.CrossRefGoogle Scholar
Windhager, E. E. & Giebisch, G. (1965). Electrophysiology of the nephron. Physiol. Rev. 45, 214–44.CrossRefGoogle ScholarPubMed
Wood, J. L., Farrand, P. S. & Harvey, W. R. (1969). Active transport of potassium by the Cecropia midgut. vi. Microelectrode potential profile. J. exp. Biol. 50, 169–78.CrossRefGoogle ScholarPubMed
Young, J. A. & Schögel, E. (1966). Micropuncture investigation of sodium and potassium excretion in rat submaxillary saliva. Pflüg. Arch. ges. Physiol. 291, 8598.CrossRefGoogle ScholarPubMed
Young, J. A., Frömter, E., Schögel, E. & Hamann, K. F. (1967). A micro- perfusion investigation of sodium resorption and potassium secretion by the main excretory duct of the rat submaxillary gland. Pflüg. Arch. ges. Physiol. 295, 157–72.CrossRefGoogle Scholar
Zadunaisky, J. A., Candia, O. A. & Chiarandini, D. J. (1963). The origin of the short-circuit current in the isolated skin of the South American frog Leptodactylus ocellatus. J. gen. Physiol. 47, 393402.CrossRefGoogle ScholarPubMed
Zadunaisky, J. A. & De fisch, F. W. (1964). Active and passivechloride movements across isolated amphibian skin. Am. J. Physiol. 207, 1010–14.CrossRefGoogle ScholarPubMed
Zaks, M. G., Natochin, Y. V., Sokolova, M. M., Tanasichuk, O. F. & Tverskoy, B. G. (1965). On the transport of sodium and potassium during the secretion of milk. Sechenov. J. physiol. USSR 51, 513–19.Google Scholar
Zerahn, K. 1955 Studies on the active transport of lithium in the isolatedfrog skin. Acta physiol. scand. 33, 347–58.CrossRefGoogle ScholarPubMed
Zerahn, K. (1956). Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta physiol. scand. 36, 300–18.CrossRefGoogle ScholarPubMed