Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T02:33:19.522Z Has data issue: false hasContentIssue false

Fluorescence correlation spectroscopy applied to rotational diffusion of macromolecules

Published online by Cambridge University Press:  17 March 2009

Måns Ehrenberg
Affiliation:
Department of Medical Biophysics, Karolinska Institute, 10401 Stockholm 60, Sweden
Rudolf Rigler
Affiliation:
Department of Medical Biophysics, Karolinska Institute, 10401 Stockholm 60, Sweden

Extract

A quantitative relationship between polarization properties of fluorescence light and molecular rotational diffusion was first derived by Perrin (1926). His results, which concerned spherical particles, have later been refined to the more complex rotational motion of asymmetric bodies (Memming, 1961; Chuang & Eisenthal, 1972; Ehrenberg & Rigler, 1972; Belford, Belford & Weber, 1972).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belford, G. G., Belford, R. L. & Weber, G. (1972). Dynamics of fluorescence polarization in macromolecules. Proc. natn. Acad. Sci. U.S.A. 69, 1392.CrossRefGoogle Scholar
Chuang, T. J. & Eisenthal, K. B. (1972). Theory of fluorescence depolarization by anisotropic rotational diffusion. J. Chem. Phys. 57, 5094.Google Scholar
Ehrenberg, M. & Rigler, R. (1972). Polarized fluorescence and rotational Brownian motion. Chem. Phys. Lett. 14, 539.CrossRefGoogle Scholar
Ehrenberg, M. & Rigler, R. (1974). Rotational Brownian motion and fluorescence intensity fluctuations. Chem. Phys. 4, 390.CrossRefGoogle Scholar
Ehrenberg, M. (1975). Rotational Brownian motion of fluorescence labelled macromolecules. Thesis, Royal Institute of Technology, Stockholm.Google Scholar
Elson, E. L. & Magde, D. (1974). Fluorescence correlation spectroscopy. I. Conceptual Basis and Theory. Biopolymers 13, 1.CrossRefGoogle Scholar
Favro, L. D. (1960). Theory of the rotational Brownian motion of a free rigid body. Phys. Rev. 119, 63.CrossRefGoogle Scholar
Koppel, D. E. (1974). Statistical accuracy in fluorescence correlation spectroscopy. Phys. Rev. A 10, 1938.CrossRefGoogle Scholar
Magde, D., Elson, E. L. & Webb, W. W. (1972). Thermodynamic fluctuations in a reacting system – Measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705.CrossRefGoogle Scholar
Magde, D., Elson, E. L. & Webb, W. W. (1974). Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29.CrossRefGoogle Scholar
Memming, R. (1961). Theorie der Fluoreszenzpolarisation für nicht kugelsymmetrische Moleküle. Z. Phys. Chem. N.F. 28, 168.CrossRefGoogle Scholar
Perrin, F. (1926.) Polarisation de la lumière de luorescence. Vie moyenne des molecules dans l'etat excité. J. Phys. Radium (Paris) 7, 390.CrossRefGoogle Scholar
Razi, Naqvi K., Gonzalez-Rodrigues, J., Cherry, R. J. & Chapman, D. (1973). Spectroscopic technique for studying protein rotation in membranes. Nature (New Biol.) 245, 249.Google Scholar
Rose, M. E. (1957). Elementary Theory of Angular Momentum. New York: Wiley & Sons.CrossRefGoogle Scholar
Schmitz, K. S. & Schurr, J. M. (1973). Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA. Biopolymers 12, 1543.Google Scholar
Schurr, J. M. & Schmitz, K. S. (1973). Rotational relaxation of macromolecules determined by dynamic light scattering. I. Tobacco mosaic virus. Biopolymers 12, 1021.CrossRefGoogle Scholar