Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T09:51:58.709Z Has data issue: false hasContentIssue false

Cross-saturation and transferred cross-saturation experiments

Published online by Cambridge University Press:  29 April 2014

Takumi Ueda
Affiliation:
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda-ku 102-0075, Japan
Koh Takeuchi
Affiliation:
Molecular Profiling Research Center, National Institute of Advanced Industrial Science and Technology, Aomi, Koto-ku, Tokyo 135-0064, Japan
Noritaka Nishida
Affiliation:
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
Pavlos Stampoulis
Affiliation:
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
Yutaka Kofuku
Affiliation:
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
Masanori Osawa
Affiliation:
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
Ichio Shimada*
Affiliation:
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
*
*Author for Correspondence: Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Tel: +(81) (3) 3815 6540; Fax: +(81) (3) 3815 6540; Email: [email protected]

Abstract

Structural analyses of protein–protein interactions are required to reveal their functional mechanisms, and accurate protein–protein complex models, based on experimental results, are the starting points for drug development. In addition, structural information about proteins under physiologically relevant conditions is crucially important for understanding biological events. However, for proteins such as those embedded in lipid bilayers and transiently complexed with their effectors under physiological conditions, structural analyses by conventional methods are generally difficult, due to their large molecular weights and inhomogeneity. We have developed the cross-saturation (CS) method, which is an nuclear magnetic resonance measurement technique for the precise identification of the interfaces of protein–protein complexes. In addition, we have developed an extended version of the CS method, termed transferred cross-saturation (TCS), which enables the identification of the residues of protein ligands in close proximity to huge (>150 kDa) and heterogeneous complexes under fast exchange conditions (>0.1 s−1). Here, we discuss the outline, basic theory, and practical considerations of the CS and TCS methods. In addition, we will review the recent progress in the construction of models of protein–protein complexes, based on CS and TCS experiments, and applications of TCS to in situ analyses of biologically and medically important proteins in physiologically relevant states.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

9. References

Ago, T., Takeya, R., Hiroaki, H., Kuribayashi, F., Ito, T., Kohda, D. & Sumimoto, H. (2001). The PX domain as a novel phosphoinositide-binding module. Biochemical and Biophysical Research Communication 287(3), 733738.Google Scholar
Ago, T., Kuribayashi, F., Hiroaki, H., Takeya, R., Ito, T., Kohda, D. & Sumimoto, H. (2003). Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activation. Proceedings of the National Academy of Sciences United States of America 100(8), 44744479.CrossRefGoogle ScholarPubMed
Akasaka, K. (1981). Longitudinal relaxation of protons under cross saturation and spin diffusion. Journal of Magnetic Resonance 45(2), 337343.Google Scholar
Appay, V., Brown, A., Cribbes, S., Randle, E. & Czaplewski, L. G. (1999). Aggregation of RANTES is responsible for its inflammatory properties. Characterization of nonaggregating, noninflammatory RANTES mutants. Journal of Biological Chemistry 274(39), 2750527512.Google Scholar
Balla, T. (2013). Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiological Reviews 93(3), 10191137.Google Scholar
Battiste, J. L. & Wagner, G. (2000). Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39(18), 53555365.Google Scholar
Bayburt, T. H., Grinkova, Y. V. & Sligar, S. G. (2002). Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Letters 2(8), 853856.Google Scholar
Benians, A., Leaney, J. L., Milligan, G. & Tinker, A. (2003). The dynamics of formation and action of the ternary complex revealed in living cells using a G-protein-gated K+ channel as a biosensor. Journal of Biological Chemistry 278(12), 1085110858.Google Scholar
Berg, T. (2008). Small-molecule inhibitors of protein–protein interactions. Current Opinion in Drug Discovery & Development 11(5), 666674.Google Scholar
Berger, E. A., Murphy, P. M. & Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology 17, 657700.Google Scholar
Berlin, S., Tsemakhovich, V. A., Castel, R., Ivanina, T., Dessauer, C. W., Keren-Raifman, T. & Dascal, N. (2011). Two distinct aspects of coupling between Gα(i) protein and G protein-activated K+ channel (GIRK) revealed by fluorescently labeled Gα(i3) protein subunits. Journal of Biological Chemistry 286(38), 3322333235.Google Scholar
Bravo, J., Karathanassis, D., Pacold, C. M., Pacold, M. E., Ellson, C. D., Anderson, K. E., Butler, P. J., Lavenir, I., Perisic, O., Hawkins, P. T., Stephens, L. & Williams, R. L. (2001). The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Molecular Cell 8(4), 829839.Google Scholar
Busch, A. & Hippler, M. (2011). The structure and function of eukaryotic photosystem I. Biochimica et Biophysica Acta 1807(8), 864877.Google Scholar
Campanella, G. S., Grimm, J., Manice, L. A., Colvin, R. A., Medoff, B. D., Wojtkiewicz, G. R., Weissleder, R. & Luster, A. D. (2006). Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity. Journal of Immunology 177(10), 69916998.Google Scholar
Chatani, E., Ohnishi, R., Konuma, T., Sakurai, K., Naiki, H. & Goto, Y. (2010). Pre-steady-state kinetic analysis of the elongation of amyloid fibrils of beta(2)-microglobulin with tryptophan mutagenesis. Journal of Molecular Biology 400(5), 10571066.Google Scholar
Chida, H., Nakazawa, A., Akazaki, H., Hirano, T., Suruga, K., Ogawa, M., Satoh, T., Kadokura, K., Yamada, S., Hakamata, W., Isobe, K., Ito, T., Ishii, R., Nishio, T., Sonoike, K. & Oku, T. (2007). Expression of the algal cytochrome c 6 gene in Arabidopsis enhances photosynthesis and growth. Plant and Cell Physiology 48(7), 948957.Google Scholar
Clore, G. M. (2011). Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Protein Science 20(2), 229246.Google Scholar
Clore, G. M. & Iwahara, J. (2009). Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chemical Reviews 109(9), 41084139.Google Scholar
Crump, M. P., Gong, J. H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-Seisdedos, F., Virelizier, J. L., Baggiolini, M., Sykes, B. D. & Clark-Lewis, I. (1997). Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO Journal 16(23), 69967007.Google Scholar
Cullen, P. J., Cozier, G. E., Banting, G. & Mellor, H. (2001). Modular phosphoinositide-binding domains – their role in signalling and membrane trafficking. Current Biology 11(21), R882R893.Google Scholar
Dogan, J., Gianni, S. & Jemth, P. (2013). The binding mechanisms of intrinsically disordered proteins. Physical Chemistry Chemical Physics 16(14), 63236331.Google Scholar
Gerlach, L. O., Skerlj, R. T., Bridger, G. J. & Schwartz, T. W. (2001). Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. Journal of Biological Chemistry 276(17), 1415314160.Google Scholar
Gluck, J. M., Wittlich, M., Feuerstein, S., Hoffmann, S., Willbold, D. & Koenig, B. W. (2009). Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. Journal of American Chemical Society 131(34), 1206012061.Google Scholar
Glueck, J. M., Wittlich, M., Feuerstein, S., Hoffmann, S., Willbold, D. & Koenig, B. W. (2009). Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. Journal of American Chemical Society 131(34), 1206012061.Google Scholar
Goto, N. K., Gardner, K. H., Mueller, G. A., Willis, R. C. & Kay, L. E. (1999). A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. Journal of Biomolecular NMR 13(4), 369374.Google Scholar
Gozansky, E. K., Louis, J. M., Caffrey, M. C. & Clore, G. M. (2005). Mapping the binding of the tail of the CXCR4 receptor N-terminal extracellular to stromal cell-derived factor-1 alpha. Journal of Molecular Biology 345(4), 651658.Google Scholar
Hagn, F., Etzkorn, M., Raschle, T. & Wagner, G. (2013). Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. Journal of American Chemical Society 135(5), 19191925.Google Scholar
Hajduk, P., Augeri, D., Mack, J., Mendoza, R., Yang, J., Betz, S. & Fesik, S. (2000). NMR-based screening of proteins containing C-13-labeled methyl groups. Journal of American Chemical Society 122(33), 78987904.Google Scholar
Hanada, K., Kumagai, K., Yasuda, S., Miura, Y., Kawano, M., Fukasawa, M. & Nishijima, M. (2003). Molecular machinery for non-vesicular trafficking of ceramide. Nature 426(6968), 803809.Google Scholar
Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I. & Kurachi, Y. (2010). Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiological Reviews 90(1), 291366.Google Scholar
Hiroaki, H., Ago, T., Ito, T., Sumimoto, H. & Kohda, D. (2001). Solution structure of the PX domain, a target of the SH3 domain. Natural Structural Biology 8(6), 526530.Google Scholar
Hope, A. B. (2000). Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochimica et Biophysica Acta 1456(1), 526.Google Scholar
Hurley, J. H. & Meyer, T. (2001). Subcellular targeting by membrane lipids. Current Opinion in Cell Biology 13(2), 146152.Google Scholar
Igarashi, S., Osawa, M., Takeuchi, K., Ozawa, S. & Shimada, I. (2008). Amino acid selective cross-saturation method for identification of proximal residue pairs in a protein–protein complex. Journal of American Chemical Society 130(36), 1216812176.Google Scholar
Ito, Y. & Selenko, P. (2010). Cellular structural biology. Current Opinion in Structural Biology 20(5), 640648.Google Scholar
James, A. W. & Christopher, L. M. (2007). Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172), 10011009.Google Scholar
Jayalakshmi, V. & Krishna, N. R. (2002). Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. Journal of Magnetic Resonance 155(1), 106118.Google Scholar
Johnston, S. C., Riddle, S. M., Cohen, R. E. & Hill, C. P. (1999). Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO Journal 18(14), 38773887.Google Scholar
Kalk, A. & Berendsen, H. (1976). Proton magnetic-relaxation and spin diffusion in proteins. Journal of Magnetic Resonance 24(3), 343366.Google Scholar
Kanaba, T., Maesaki, R., Mori, T., Ito, Y., Hakoshima, T. & Mishima, M. (2013). Microtubule-binding sites of the CH domain of EB1 and its autoinhibition revealed by NMR. Biochimica et Biophysica Acta 1834(2), 499507.Google Scholar
Kanamori, E., Igarashi, S., Osawa, M., Fukunishi, Y., Shimada, I. & Nakamura, H. (2011). Structure determination of a protein assembly by amino acid selective cross-saturation. Proteins 79(1), 179190.Google Scholar
Karathanassis, D., Stahelin, R., Bravo, J., Perisic, O., Pacold, C., Cho, W. & Williams, R. (2002). Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO Journal 21(19), 50575068.Google Scholar
Kawano, M., Kumagai, K., Nishijima, M. & Hanada, K. (2006). Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. Journal of Biological Chemistry 281(40), 3027930288.Google Scholar
Kofuku, Y., Yoshiura, C., Ueda, T., Terasawa, H., Hirai, T., Tominaga, S., Hirose, M., Maeda, Y., Takahashi, H., Terashima, Y., Matsushima, K. & Shimada, I. (2009). Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. Journal of Biological Chemistry 284(50), 3524035250.Google Scholar
Kubo, S., Nishida, N., Udagawa, Y., Takarada, O., Ogino, S. & Shimada, I. (2013). A gel-encapsulated bioreactor system for NMR studies of protein–protein interactions in living mammalian cells. Angewandte Chemie International Edition in English 52(4), 12081211.Google Scholar
Kumar, S. & Nussinov, R. (2002). Relationship between ion pair geometries and electrostatic strengths in proteins. Biophysical Journal 83(3), 15951612.Google Scholar
Laurence, J. S., Blanpain, C., Burgner, J. W., Parmentier, M. & Liwang, P. J. (2000). CC chemokine MIP-1 beta can function as a monomer and depends on Phe13 for receptor binding. Biochemistry 39(12), 34013409.Google Scholar
Lemmon, M. (2008). Membrane recognition by phospholipid-binding domains. Nature Reviews Molecular Cell Biology 9(2), 99111.Google Scholar
Lenoir, M., Coskun, U., Grzybek, M., Cao, X., Buschhorn, S., James, J., Simons, K. & Overduin, M. (2010). Structural basis of wedging the Golgi membrane by FAPP pleckstrin homology domains. EMBO Reports 11(4), 279284.Google Scholar
Lyukmanova, E. N., Shenkarev, Z. O., Paramonov, A. S., Sobol, A. G., Ovchinnikova, T. V., Chupin, V. V., Kirpichnikov, M. P., Blommers, M. J. J. & Arseniev, A. S. (2008). Lipid-protein nanoscale bilayers: A versatile medium for NMR investigations of membrane proteins and membrane-active peptides. Journal of American Chemical Society 130(7), 21402141.Google Scholar
Mase, Y., Yokogawa, M., Osawa, M. & Shimada, I. (2012). Structural basis for modulation of gating property of G protein-gated inwardly rectifying potassium ion channel (GIRK) by i/o-family G protein α subunit (Gαi/o). Journal of Biological Chemistry 287(23), 1953719549.Google Scholar
Matsuda, T., Ikegami, T., Nakajima, N., Yamazaki, T. & Nakamura, H. (2004). Model building of a protein–protein complexed structure using saturation transfer and residual dipolar coupling without paired intermolecular NOE. Journal of Biomolecular NMR 29(3), 325338.Google Scholar
Matsumoto, M., Ueda, T. & Shimada, I. (2010). Theoretical analyses of the transferred cross-saturation method. Journal of Magnetic Resonance 205(1), 114124.Google Scholar
Matsuo, H., Walters, K. J., Teruya, K., Tanaka, T., Gassner, G. T., Lippard, S. J., Kyogoku, Y. & Wagner, G. (1999). Identification by NMR spectroscopy of residues at contact surfaces in large, slowly exchanging macromolecular complexes. Journal of American Chemical Society 121(42), 99039904.Google Scholar
Mishima, M., Maesaki, R., Kasa, M., Watanabe, T., Fukata, M., Kaibuchi, K. & Hakoshima, T. (2007). Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proceedings of the National Academy of Sciences United States of America 104(25), 1034610351.Google Scholar
Modi, W. S., Lautenberger, J., An, P., Scott, K., Goedert, J. J., Kirk, G. D., Buchbinder, S., Phair, J., Donfield, S., O'BRIEN, S. J. & Winkler, C. (2006). Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression. American Journal of Human Genetics 79(1), 120128.Google Scholar
Mulder, F. A., Schipper, D., Bott, R. & Boelens, R. (1999). Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. Journal of Molecular Biology 292(1), 111123.Google Scholar
Nagasawa, T., Tachibana, K. & Kawabata, K. (1999). A CXC chemokine SDF-1/PBSF: a ligand for a HIV coreceptor, CXCR4. Advances in Immunology 71, 211228.Google Scholar
Nakamura, T., Takahashi, H., Takeuchi, K., Kohno, T., Wakamatsu, K. & Shimada, I. (2005). Direct determination of a membrane-peptide interface using the nuclear magnetic resonance cross-saturation method. Biophysical Journal 89, 40514055.Google Scholar
Nakanishi, T., Miyazawa, M., Sakakura, M., Terasawa, H., Takahashi, H. & Shimada, I. (2002). Determination of the interface of a large protein complex by transferred cross-saturation measurements. Journal of Molecular Biology 318(2), 245249.Google Scholar
Nath, A., Atkins, W. M. & Sligar, S. G. (2007). Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46(8), 20592069.Google Scholar
Ogino, S., Kubo, S., Umemoto, R., Huang, S. X., Nishida, N. & Shimada, I. (2009). Observation of NMR signals from proteins introduced into living mammalian cells by reversible membrane permeabilization using a pore-forming toxin, streptolysin O. Journal of American Chemical Society 131(31), 1083410835.Google Scholar
Osawa, M., Yokogawa, M., Muramatsu, T., Kimura, T., Mase, Y. & Shimada, I. (2009). Evidence for the direct interaction of spermine with the inwardly rectifying potassium channel. Journal of Biological Chemistry 284(38), 2611726126.Google Scholar
Papayannopoulos, V., Co, C., Prehoda, K. E., Snapper, S., Taunton, J. & Lim, W. A. (2005). A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Molecular Cell 17(2), 181191.Google Scholar
Paximadis, M., Mohanlal, N., Gray, G. E., Kuhn, L. & Tiemessen, C. T. (2009). Identification of new variants within the two functional genes CCL3 and CCL3L encoding the CCL3 (MIP-1 alpha) chemokine: implications for HIV-1 infection. International Journal of Immunology 36(1), 2132.Google Scholar
Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. (1997). Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proceedings of the National Academy of Sciences United States of America 94(23), 1236612371.Google Scholar
Pervushin, K. V., Wider, G. & Wüthrich, K. (1998). Single Transition-to-single Transition Polarization Transfer (ST2-PT) in [15N,1H]-TROSY. Journal of Biomolecular NMR 12(2), 345348.Google Scholar
Rajagopalan, L. & Rajarathnam, K. (2006). Structural basis of chemokine receptor function – A model for binding affinity and ligand selectivity. Bioscience Reports 26(5), 325339.Google Scholar
Raschle, T., Hiller, S., Yu, T.-Y., Rice, A. J., Walz, T. & Wagner, G. (2009). Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. Journal of American Chemical Society 131(49), 1777717779.Google Scholar
Rask-Andersen, M., Almén, M. S. & Schiöth, H. B. (2011). Trends in the exploitation of novel drug targets. Nature Reviews Drug Discovery 10(8), 579590.Google Scholar
Ritchie, T. K., Grinkova, Y. V., Bayburt, T. H., Denisov, I. G., Zolnerciks, J. K., Atkins, W. M. & Sligar, S. G. (2009). Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods in Enzymology 464, 211231.Google Scholar
Rosen, M. K., Gardner, K. H., Willis, R. C., Parris, W. E., Pawson, T. & Kay, L. E. (1996). Selective methyl group protonation of perdeuterated proteins. Journal of Molecular Biology 263(5), 627636.Google Scholar
Sato, T. K., Overduin, M. & Emr, S. D. (2001). Location, location, location: membrane targeting directed by PX domains. Science 294(5548), 18811885.Google Scholar
Schols, D., Struyf, S., Van Damme, J., Este, J. A., Henson, G. & De Clercq, E. (1997). Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. Journal of Experimental Medicine 186(8), 13831388.Google Scholar
Shenkarev, Z. O., Lyukmanova, E. N., Paramonov, A. S., Shingarova, L. N., Chupin, V. V., Kirpichnikov, M. P., Blommers, M. J. & Arseniev, A. S. (2010). Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. Journal of American Chemical Society 132(16), 56285629.Google Scholar
Shimada, I. (2005). NMR techniques for identifying the interface of a larger protein–protein complex: cross-saturation and transferred cross-saturation experiments. Methods in Enzymology 394, 483506.Google Scholar
Shimada, I., Ueda, T., Matsumoto, M., Sakakura, M., Osawa, M., Takeuchi, K., Nishida, N. & Takahashi, H. (2009). Cross-saturation and transferred cross-saturation experiments. Progress in Nuclear Magnetic Resonance Spectroscopy 54(2), 123140.Google Scholar
Simonsen, A., Wurmser, A. E., Emr, S. D. & Stenmark, H. (2001). The role of phosphoinositides in membrane transport. Current Opinion in Cell Biology 13(4), 485492.Google Scholar
Stampoulis, P., Ueda, T., Matsumoto, M., Terasawa, H., Miyano, K., Sumimoto, H. & Shimada, I. (2012). Atypical membrane-embedded phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2)-binding site on p47(phox) Phox homology (PX) domain revealed by NMR. Journal of Biological Chemistry 287(21), 1784817859.Google Scholar
Sugiki, T., Takeuchi, K., Yamaji, T., Takano, T., Tokunaga, Y., Kumagai, K., Hanada, K., Takahashi, H. & Shimada, I. (2012). Structural basis for the Golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT). Journal of Biological Chemistry 287(40), 3370633718.Google Scholar
Takahashi, H., Nakanishi, T., Kami, K., Arata, Y. & Shimada, I. (2000). A novel NMR method for determining the interfaces of large protein–protein complexes. Natural Structural Biology 7(3), 220223.Google Scholar
Takahashi, H., Miyazawa, M., Ina, Y., Fukunishi, Y., Mizukoshi, Y., Nakamura, H. & Shimada, I. (2006). Utilization of methyl proton resonances in cross-saturation measurement for determining the interfaces of large protein–protein complexes. Journal of Biomolecular NMR 34(3), 167177.Google Scholar
Takeda, M., Terasawa, H., Sakakura, M., Yamaguchi, Y., Kajiwara, M., Kawashima, H., Miyasaka, M. & Shimada, I. (2003). Hyaluronan recognition mode of CD44 revealed by cross-saturation and chemical shift perturbation experiments. Journal of Biological Chemistry 278(44), 4355043555.Google Scholar
Takeuchi, K., Takahashi, H., Sugai, M., Iwai, H., Kohno, T., Sekimizu, K., Natori, S. & Shimada, I. (2004). Channel-forming membrane permeabilization by an antibacterial protein, sapecin: determination of membrane-buried and oligomerization surfaces by NMR. Journal of Biological Chemistry 279(6), 49814987.Google Scholar
Ueda, T., Nomoto, N., Koga, M., Ogasa, H., Ogawa, Y., Matsumoto, M., Stampoulis, P., Sode, K., Terasawa, H. & Shimada, I. (2012). Structural basis of efficient electron transport between photosynthetic membrane proteins and plastocyanin in spinach revealed using nuclear magnetic resonance. Plant Cell 24(10), 41734186.Google Scholar
Wang, X., Watson, C., Sharp, J. S., Handel, T. M. & Prestegard, J. H. (2011). Oligomeric structure of the chemokine CCL5/RANTES from NMR, MS, and SAXS data. Structure 19(8), 11381148.Google Scholar
Whorton, M. R. & Mackinnon, R. (2011). Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147(1), 199208.Google Scholar
Wright, P. E. & Dyson, H. J. (2009). Linking folding and binding. Current Opinion in Structural Biology 19(1), 3138.Google Scholar
Wu, B., Chien, E. Y., Mol, C. D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F. C., Hamel, D. J., Kuhn, P., Handel, T. M., Cherezov, V. & Stevens, R. C. (2010). Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007), 10661071.Google Scholar
Yamamoto, S., Hasegawa, K., Yamaguchi, I., Goto, Y., Gejyo, F. & Naiki, H. (2005). Kinetic analysis of the polymerization and depolymerization of beta(2)-microglobulin-related amyloid fibrils in vitro. Biochimica et Biophysica Acta 1753(1), 3443.Google Scholar
Yanagi, K., Sakurai, K., Yoshimura, Y., Konuma, T., Lee, Y. H., Sugase, K., Ikegami, T., Naiki, H. & Goto, Y. (2012). The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques. Journal of Molecular Biology 422(3), 390402.Google Scholar
Yokogawa, M., Osawa, M., Takeuchi, K., Mase, Y. & Shimada, I. (2011). NMR analyses of the Gβγ binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). Journal of Biological Chemistry 286(3), 22152223.Google Scholar
Yokogawa, M., Kobashigawa, Y., Yoshida, N., Ogura, K., Harada, K. & Inagaki, F. (2012). NMR analyses of the interaction between the FYVE domain of early endosome antigen 1 (EEA1) and phosphoinositide embedded in a lipid bilayer. Journal of Biological Chemistry 287(42), 3493634945.Google Scholar
Yoshiura, C., Kofuku, Y., Ueda, T. Y. M., Yokogawa, M., Osawa, M., Terashima, Y., Matsushima, K. & Shimada, I. (2010). NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers. Journal of American Chemical Society 132(19), 67686777.Google Scholar
Zhou, H. X. & Cross, T. A. (2013). Influences of membrane mimetic environments on membrane protein structures. Annual Review of Biophysics 42, 361392.Google Scholar