Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T16:17:29.792Z Has data issue: false hasContentIssue false

Aspects on gravity-induced movements in plants

Published online by Cambridge University Press:  17 March 2009

Anders Johnsson
Affiliation:
Department of Electrical Measurements, Lund Institute of Technology, S–22007 Lund 7, Sweden

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amlong, H. U. (1934). Untersuchungen über die Beziehungen zwischen geoelektrischem Effekt und Geotropismus. Planta 21, 211250.CrossRefGoogle Scholar
Andersen, H. & Johnsson, A. (1969). Experimental studies of resonance phenomena in the gravity compensating system in sunflower (Helianthus annuus).Conference of the Swedish National Committee for Physics. Manual B118B129. Stockholm.Google Scholar
Anker, L. (1962). Ortho-geotropism in shoots and coleoptiles. Handbuch der Pflanzenphysiologie 17/2, 103152. Springer Verlag.Google Scholar
Audus, L. J. (1962). The mechanism of the perception of gravity by plants. Symp. Soc. Exp. Biol. XVI. Biological Receptor Mechanisms pp. 197226.Google Scholar
Audus, L. J. (1964). Geotropism and the modified sine rule: an interpretation based on the amyloplast statolith theory. Physiologia Pl. 17, 737745.CrossRefGoogle Scholar
Baillaud, L. (1957). Recherches sur les mouvements spontanés des plantes grimpantes. Thése Sciences Besançon, no. 5. (Ann. sci. Univ. Besançon, sér. 2, Bot. 11. 1959.)Google Scholar
Baillaud, L. (1962). Mouvements autonomes des tiges, vrilles et autres organes à l'exception dès organes volubiles et des feuilles. Handbuch der Pflanzenphysiologie 17/2, 562634. Springer Verlag.Google Scholar
Banbury, G. H. (1962). Geotropism of lower plants. Handbuch der Pflanzenphysiologie 17/2, 344377. Springer Verlag.Google Scholar
Brauner, L. (1927). Untersuchungen über das geo-elektrische Phänomen. I. Jb. wiss. Bot. 66, 381428.Google Scholar
Brauner, L. (1928). Untersuchungen über das geo-elektrische Phänomen. II. Jb. wiss. Bot. 68, 711770.Google Scholar
Brauner, L. (1962). Primäreffekte der Scherkraft bei geotropischen Reaktion. Handbuch der Pflanzenphysiologie 17/2, 74102. Springer Verlag.Google Scholar
Brauner, L. & Bünning, E. (1931). Geoelektrischer Effekt und Elektropismus. Ber. dt. bot. Ges. 48, 470476.Google Scholar
Brauner, L., Dellinghausen, M. V. & Böck, A. (1964). Neue Versuche zum geoelektrischen Effekt. Planta 62, 195220.CrossRefGoogle Scholar
Brauner, L. & Diemer, R. (1967). Über den Einfluss von Wuchsstoff auf die Entwicklung bioelektrischer Potentiale in Pflanzengeweben. Planta 77 131.CrossRefGoogle Scholar
Brauner, L. & Hager, A. (1958). Versuche zur Analyse der geotropischen Perzeption. Planta 51, 115147.CrossRefGoogle Scholar
Brauner, L. & Zipperer, A. (1961). Über die Anfangsphasen der geotropischen Krümmungsbewegung von Avena-koleoptilen. Planta, 57 503517.CrossRefGoogle Scholar
Buder, J. (1961). Der Geotropismus der Characeenrhizoide. Ber. dt. bot. Ges. 74. 1423.Google Scholar
Bünning, E. (1967). The Physiological Clock. New York: Springer.CrossRefGoogle Scholar
Burg, S. P. & Burg, E. A. (1967). Lateral auxin transport in stems and shoots. PI. Physiol. Lancaster 42, 891893.CrossRefGoogle Scholar
Calábek, J. & Chytilová, V. (1959). Einfluss der Temperatur auf die autonomen Bewegungen des hypocotyls der Ipomoea. Pr. bm. Zakl. ĉsl. Akad. Vid 4, 217238.Google Scholar
Cane, A. R. & Wilkins, M. B. (1969). Independence of lateral and differential longitudinal movement of indoleacetic acid in geotropically stimulated coleoptiles of Zea mays. PI. Physiol. Lancaster 44, 14811487.CrossRefGoogle ScholarPubMed
Cholodny, N. (1927). Wuchshormone und Tropismen bei der Pflanzen. Biol. Zbl. 47, 604.Google Scholar
Cook, J. M. (1969). Disorienting patterns of motion. Math. Biosci. 5, 353364.CrossRefGoogle Scholar
Darwin, Ch. & F., (1880). The Power of Movement in Plants. London. (Republication 1966. Da Capo Press, New York.)Google Scholar
Dedolph, R. R., Oemick, D. A., Wilson, B. R. & Smith, G. R. (1967). Casual basis of gravity stimulus nullification by clinostat rotation. PI. Physiol. Lancaster 42, 13731383.CrossRefGoogle Scholar
Dolk, H. E. (1936). Geotropism and the growth substances. Reel. Traυ. bot. néerl. 33, 509585.Google Scholar
Etherton, B. (1970). Effect of indole-3-acetic acid on membrane potentials of oat coleoptile cells. PL Physiol. Lancaster 45, 527528.CrossRefGoogle ScholarPubMed
Evans, M. & Hokanson, R. (1969). Timing of the response of coleoptiles to the application and withdrawal of various auxins. Planta, 85, 8595.CrossRefGoogle Scholar
Filner, B., Hertel, R., Steele, Ch. & Fan, V. (1970). Some aspects of geotropism in coleoptiles. Planta, 94, 333354.CrossRefGoogle ScholarPubMed
Frank, A. R. (1868). Beiträge zur Pflanzenphysiologie. I. Ueber die Schwerkraft verursachte Bewegung υon Pflanzenteilen. Leipzig: Engelmann.Google Scholar
Fuente, R. K. de la & Leopold, A. C. (1970 a). The transportable auxin pool. Pl. Physiol. Lancaster 45, 1924.CrossRefGoogle ScholarPubMed
Fuente, R. K. de la & Leopold, A. C. (1970 b). Time course of auxin stimulations of growth. Pl. Physiol. Lancaster 46, 186189.CrossRefGoogle Scholar
Goldsmith, M. H. (1968). The transport of auxin. A. Rev. PI. Physiol. 19, 347360.CrossRefGoogle Scholar
Gordon, S. A. (1963). Gravity and plant development: bases for experiment. Space Biology. Proc. Biol. Coll. pp. 75105. Oregon State University Press.Google Scholar
Gordon, S. A., Miller, J. S., Dedolph, R., Eisler, W., Tracy, A., Harrison, W., Cook, J., Strecok, A., Kleb, R., Halpern, G., Gole, W., Willand, J., Kotula, B., Johanson, E., McDowell, W., Despe, O., McGinnis, G., Preston, M., Bran, J. & Sharp, W. (1964). Growth and development of plants in compensated fields. Interim report No. 3 R-104, Argonne Natl Laboratory.Google Scholar
Gradmann, H. (1922). Die Fünfphasenbewegung der Ranken. Jb. wiss. Bot. 61, 169204.Google Scholar
Gradmann, H. (1927). Die Ueberkrümmungsbewegungen etiolierter Keimpflanzen. Jb. wiss. Bot. 66, 339357.Google Scholar
Grahm, L. (1964). Measurements of geoelectric and auxin-induced potentials in coleoptiles with a refined vibrating electrode technique. Physiologia Pl. 17, 231261.CrossRefGoogle Scholar
Grahm, L. & Hertz, C. H. (1962). Measurements of the geoelectric effect in coleoptiles by a new technique. Physiologia Pl. 15, 96114.CrossRefGoogle Scholar
Grahm, L. & Hertz, C. H. (1964). Measurement of the geoelectric effect in coleoptiles. Physiologia Pl. 17, 186201.CrossRefGoogle Scholar
Gray, S. W. & Edwards, B. F. (1968). The effect of weightlessness on wheat seedling morphogenesis and histochemistry. Bioscience 18, 638645.CrossRefGoogle Scholar
Harris, G. G. (1968). Brownian motion in the cochlear partition. J. acoust. Soc. Am. 44, 176186.CrossRefGoogle ScholarPubMed
Haupt, W. (1965). Bewegungen. Fortschr. Bot., Berl. 27, 230249.CrossRefGoogle Scholar
Haupt, W. (1968). Bewegungen. Fortschr. Bot., Berl. 30, 169175.CrossRefGoogle Scholar
Hawker, L. E. (1932). A quantitative study of the geotropism of seedlings with special reference to the nature and development of their statolith apparatus. Ann. Bot. 46, 121157.CrossRefGoogle Scholar
Hawker, L. E. (1933). The effect of temperature on the geotropism of seedlings of Lathyrus odoratus. Ann. Bot. 47, 503515.CrossRefGoogle Scholar
Heathcote, D. G. (1969). Some effects of temperature on the nutation of young Phaseolus epicotyls. J. exp. Bot. 20, 849855.CrossRefGoogle Scholar
Heathcote, D. G. & Idle, D. B. (1965). Nutation in seedling Phaseoulus multiflorus. Ann. Bot. 29, 563577.CrossRefGoogle Scholar
Hertel, R. & Flory, R. (1968). Auxin movement in corn coleoptiles. Planta 82, 123144.CrossRefGoogle ScholarPubMed
Hertel, R., Fuente, R. K. de la & Leopold, A. C. (1969). Geotropism and the lateral transport of auxin in the corn amylomaize mutant. Planta 88, 204214.CrossRefGoogle ScholarPubMed
Hertel, R. & Leopold, A. C. (1963). Versuche zur Analyse des Auxintransprts in der Koleoptilev on Zea mays. L. Planta 59, 535562.CrossRefGoogle Scholar
Hertz, C. H. (1960). Electrostatic measurement of the geoelectric effect in coleoptiles. Nature, Lond. 187, 320321.CrossRefGoogle Scholar
Huisinga, B. (1968). Model experiment on the movement of statoliths. Acta bot. néerl. 17, 117125.CrossRefGoogle Scholar
Israelsson, D. & Johnsson, A. (1967). A theory for circumnutations in Helianthus annuus. Physiologia Pl. 20, 957976.CrossRefGoogle Scholar
Iversen, T. H. (1969). Elimination of geotropic responsiveness in roots of cress (Lepidium sativum) by removal of statolith starch. Physiologia Pl. 22, 12511262.CrossRefGoogle ScholarPubMed
Iversen, T. H., Pedersen, K. & Larsen, P. (1968). Movement of amyloplasts in the root cap cells of geotropically sensitive roots. Physiologia Pl 21, 811819.CrossRefGoogle Scholar
Johnson, S. P., & Tibbits, T. W. (1968). The liminal angle of a plagiotropic organ under weightlessness. Bioscience 18, 655661.CrossRefGoogle Scholar
Johnsson, A. (1965). Investigations of the reciprocity rule by means of geotropic and geoelectric measurements. Physiologia Pl. 18, 945967.CrossRefGoogle Scholar
Johnsson, A. (1966). Spontaneous movements in plants studied as a random walk process. Physiologia Pl 19, 11251137.CrossRefGoogle Scholar
Johnsson, A. (1967). Relationships between photo-induced and gravityinduced electrical potentials in Zea mays. Physiologia Pl 20, 562579.CrossRefGoogle Scholar
Johnsson, A. (1968). Introduction of noise in the gravity compensating system in Helianthus annuus. Stud. Biophys. 11, 149154.Google Scholar
Johnsson, A. (1971a). Geotropic responses in Helianthus and their dependence on the auxin ratio – with a defined mathematical description of the course of geotropic movements. Physiologia Pl 27, 419425.Google Scholar
Johnsson, A. (1971b). Investigations of the geotropic curvature of the Avena coleoptile. I. The geotropic response curve. Physiologia Pl 25, 3542.CrossRefGoogle Scholar
Johnsson, A. & Israelsson, D. (1968). Application of a theory for circum nutations to geotropic movements. Physiologia Pl 21, 282291.CrossRefGoogle Scholar
Johnsson, A. & Israelsson, D. (1969). Phase-shift in geotropical oscillations – a theoretical and experimetal study. Physiologia Pl 22, 12261237.CrossRefGoogle Scholar
Johnsson, A., Rengman, K. & Grahm, L. (1971). Investigations of the geotropic curvature of the Avena coleoptile. II. The presentation time as function of distance from apex. Physiologia Pl 25, 4347.CrossRefGoogle Scholar
Juniper, B. E., Groves, S., Schachar, B. L. & Audus, L. J. (1966). Root cap and the perception of gravity. Nature, Lond. 209, 9394.CrossRefGoogle Scholar
Kaldewey, H. (1962). Plagio-und diageotropismus der Sprosse and Blätter, einschliesslich Epinastie, Hyponastie. Entfaltungs-bewegungen. Handbuch der Pflanzenphysiologie 17/2, 200321. Springer Verlag.Google Scholar
Karve, A. D. & Salanki, A. S. (1964). The phenomenon of phase shift in geotropically induced feedback oscillations in Carthamus tinctorius L. seedlings. Z. Pflanzenphysiol. 52, 113117.Google Scholar
Konings, H. (1968). The significance of the root cap for geotropism. Acta bot. néerl. 17, 203221.CrossRefGoogle Scholar
Larsen, P. (1957). The development of geotropic and spontaneous curvatures in roots. Physiologia Pl 10, 127163.CrossRefGoogle Scholar
Larsen, P. (1962 a). Geotropism. An introduction. Handbuch der Pflanzenphysiologie 17/2, 3473. Springer Verlag.Google Scholar
Larsen, P. (1962 b). Orthogeotropism in roots. Handbuch der Pflanzenphysiologie 17/2, 153199. Springer Verlag.Google Scholar
Larsen, P. (1965). Geotropic responses in roots as influenced by their orientation before and after stimulation. Physiologia Pl. 18, 747765.CrossRefGoogle Scholar
Larsen, P. (1969). The optimum angle of geotropic stimulation and its relation to the starch statolith hypothesis. Physiologia Pl 22, 469489.CrossRefGoogle Scholar
Linser, H. & Kiermayer, O. (1957). Methoden zur Bestimmung pflanzlicher Wuchsstoffe. Wien: Springer Verlag.CrossRefGoogle Scholar
Little, C. H. A. & Goldsmith, M. H. M. (1967). Effect of inversion on growth and movement of indole-3-acetic acid in coleoptiles. Pl Physiol. Lancaster 42, 12391245.CrossRefGoogle ScholarPubMed
Lundegårdh, H. (1926). Reizphysiologische Probleme. Planta 2, 152240.CrossRefGoogle Scholar
Lyon, Ch. L. (1968). Growth physiology of the wheat seedling in space. Bioscience 18, 633638.CrossRefGoogle Scholar
Naqvi, S. M. & Gordon, S. A. (1966). Auxin transport in Zea mays L. coleoptiles. I. Influence of gravity on the transport of indoleacetic-2-14C. Pl Physiol. Lancaster 41, 11131118.CrossRefGoogle Scholar
Newman, I. A. (1963). Electrical potentials and auxin translocation in Avena. Austr. J. Biol. Sci. 16, 629646.CrossRefGoogle Scholar
Newman, I. A. (1970). Auxin transport in Avena. I. Indoleacetic acid-14C distributions and speeds. Pl Physiol. Lancaster 46, 263272.CrossRefGoogle Scholar
Nissl, D. & Zenk, M. H. (1969). Evidence against induction of protein synthesis during auxin-induced initial elongation of Avena coleoptiles. Planta 89, 323341.CrossRefGoogle ScholarPubMed
Ouitrakul, R. & Hertel, R. (1969). Effect of gravity and centrifugal acceleration on auxin transport in corn coleoptiles. Planta 88, 233243.CrossRefGoogle ScholarPubMed
Parkinson, K. J. (1966). Bioelectric potentials of intact green plants. II. Analysis of the changes in the measured bioelectric potentials of Avena sativa L. coleoptiles brought about by the application of the measuring contacts. J. exp. Bot. 51, 309319.CrossRefGoogle Scholar
Pickard, B. G. & Thimann, K. V. (1966). Geotropic responses of wheat coleoptiles in absence of amyloplast starch. J. gen. Physiol. 49, 10651086.CrossRefGoogle ScholarPubMed
Pilet, P. E. (1950). Nouvelle contribution à 1'etude du géotropisme des étaimes d'Hosta caeural Tratt. Ber. schwetz. bot. Ges. 60, 513.Google Scholar
Ramshorn, K. (1934). Experimentella Beiträge zur elektrophysiologischen Wachstrumstheorie. Planta 22, 737766.CrossRefGoogle Scholar
Rawitzcher, F. (1932). Der Geotropismus der Pflanzen. Jena: Fischer.Google Scholar
Rayle, D. L., Evans, M. L. & Hertel, R. (1970). Action of auxin on cell elongation. Proc. natn. Acad. Sci. U.S.A. 65, 184191.CrossRefGoogle ScholarPubMed
Riss, M.-M. (1914). Ueber deu Einfluss allseitig und in der Längsrichtung wirkender Schwerkraft auf Wurzeln. Jb. wiss. Bot. 53, 157209.Google Scholar
Rutgers, A. A. L. (1912). The influence of temperature on the geotropic presentation time. Reel. Trav. bot. néerl. 9, 1123.Google Scholar
Rutten-Pekelharing, C. J. (1910). Untersuchungen über die Perzeption des Schwerkraftreizes. Reel. Trav. bot. néerl. 7, 241346.Google Scholar
Sachs, J. (1882). Ueber Ausschliessung der geotropischen und heliotropischen Krumming während des Wachsens. Arb. bot. Inst. Wurzburg 2, 209225.Google Scholar
Schrank, A. R. (1958). Electronasty and electrotropism. Handbuch der Pflanzenphysiologie 17/1. Springer Verlag.Google Scholar
Scott, I. H. (1957). Electric oscillations generated by plant roots and a possible feedback mechanism responsible for them. Aust. J. biol. Sci. 10, 164179.CrossRefGoogle Scholar
Scott, I. H. (1967). Electric fields in plants. A. Rev. PI. Physiol. 18, 409418.CrossRefGoogle Scholar
Scott, T. K. & Wilkins, M. B. (1968). Auxin transport in roots. II. Polar flux of IAA in Zea roots. Planta 83, 323334.CrossRefGoogle ScholarPubMed
Shen-Miller, J. (1970). Reciprocity in the activation of geotropism in oat coleoptiles grown in clinostats. Planta 92, 152163.CrossRefGoogle ScholarPubMed
Shen-Miller, J., Hinchman, R. & Gordon, S. A. (1968). Thresholds for georesponse to acceleration in gravity-compensated Acena-seedlings. Pl. Physiol. Lancaster 43, 338344.CrossRefGoogle Scholar
Sievers, A. (1967 a). Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. II. Die polare Organisation des normal wachsenden Rhizoids von Chara foetida. Protoplasma 64, 225253.CrossRefGoogle Scholar
Sievers, A. (1967 b). Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. III. Die transversale Polarisierung der Rhizoidspitze von Chara foetida nach 5 bis 10 Minuten Horizontallage. Z. Pfianzenphysiol. 462473.Google Scholar
Sollberger, A. (1965). Biological Rhythm Research. Amsterdam-London-New York: Elsevier.Google Scholar
Syre, H. (1938). Untersuchungen über Statolithenstärke und Wuchsstoff an vorbehandelten Wurzeln. Z. Bot. 33, 129182.Google Scholar
Ubisch, G. von. (1928). Betrachtungen und Versuche zur Statolithenhypothese. Biol. Zbl. 48, 172190.Google Scholar
Virgin, H. (1951). The effect of light on the protoplasmic viscosity Physiologia Pl. 4, 255357.CrossRefGoogle Scholar
Weber, G. (1914). Änderung der Plasmaviskosität bei geotropischer Reizung. Ost. bot. Z. 64, 439442.CrossRefGoogle Scholar
Went, F. W. (1928). Wuchsstoff und Wachstum. Reel. Trav. bot. néerl. 25, 1116.Google Scholar
Went, F. W. (1932). Eine botanische Polaritätstheori. Jb. wiss. Bot. 76 528557.Google Scholar
Wilkins, M. B. (1966). Geotropism. A. Rev. Pl. Physiol. 17, 379408.CrossRefGoogle Scholar
Wilkins, M. B. & Scott, T. K. (1968a). Auxin transport in roots. Nature, Lond. 219, 13881389.CrossRefGoogle Scholar
Wilkins, M. B. & Scott, T. K. (1968b). Auxin transports in roots. III. Dependence of the polar flux of IAA in Zea roots upon metabolism. Planta 83, 335346.CrossRefGoogle Scholar
Wilkins, M. B. & Whyte, P. (1968). Relationship between metabolism and the lateral transport of IAA in corn coleoptile. Pl. Physiol. Lancaster 43, 14351442.CrossRefGoogle Scholar
Wilkins, M. B. & Woodcock, A. E. R. (1965). Origin of the geoelectric effect in plants. Nature, Lond. 208, 990992.CrossRefGoogle Scholar
Woodcock, A. E. R. & Wilkins, M. B. (1969 a). The geoelectric effect in plant shoots. I. The characteristics of the effect. J. exp. Bot. 20, 156169.CrossRefGoogle Scholar
Woodcock, A. E. R. & Wilkins, M. B. (1969 b). The geoelectric effect in plant shoots. II. Sensitivity of concentration chain electrodes to reorientation. J. exp. Bot. 20, 687697.CrossRefGoogle Scholar
Yeomans, L. M. & Audus, I. J. (1964). Auxin transport in roots: Vicia faba. Nature, Lond. 204, 559562.CrossRefGoogle Scholar
Zimmerman, W. (1927). Beiträge zur Kenntnis der Georeaktionen. I. Geotonische Längskraftwirkungen auf orthotrope Hauptwurzeln. Jb. wiss. Bot. 66, 631677.Google Scholar
Zollikofer, Cl. (1919). Ueber das geotropische Verhalten enstärkter Keimstengel und den Abbau der Stärke in Gramineenkoleoptilen. Beitr. allg. Bot. 1, 339–. (Cited in Rawitscher 1932.)Google Scholar