Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:24:00.294Z Has data issue: false hasContentIssue false

Applications of Pulse Radiolysis to Protein Chemistry

Published online by Cambridge University Press:  17 March 2009

M. H. Klapper
Affiliation:
Ohio State University, Columbus, Ohio, U.S.A., and Nuclear Research Centre-Negev, Beer- Sheva, Israel
M. Faraggi
Affiliation:
Ohio State University, Columbus, Ohio, U.S.A., and Nuclear Research Centre-Negev, Beer- Sheva, Israel

Extract

Since its introduction, pulse radiolysis has been an important technique for examining the properties of organic and inorganic radicals, and for enumerating those reactions responsible for cellular damage by ionizing radiation. Biochemists, and biophysicists outside the area of radiation biology appear, perhaps for historical reasons, to have an incomplete appreciation of the technique's potential. Protein chemists in particular, have been only dimly aware of the numerous reports of, and the significant results obtained from pulse radiolysis studies of proteins. Our purpose here is to bring some of these results together in order to emphasize the power and usefulness of pulse radiolysis experiments both for elucidating enzyme reaction mechanisms, and for gaining information on the structure of proteins in aqueous solutions. Reviews containing related, or in part the same material to be covered here have appeared previously; for example, Land (1970), Adams et al. (1972a), Shafferman & Stein (1975), Adams & Wardman (1977). This review updates these earlier works, but more importantly approaches the topic of protein pulse radiolysis with a different emphasis.

Type
Articles
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, G. E., Aldrich, J. E., Bisby, R. H., Cundall, R. B., Redpath, J. L. & Willson, R. L. (1972 a). Selective free radical reactions with proteins and enzymes. Reactions of inorganic radical anions with amino acids. Radiat. Res. 49, 278289.CrossRefGoogle ScholarPubMed
Adams, G. E., Baverstock, K. F., Cundall, R. B. & Redpath, J. L. (1973 a). Radiation effects on α-chymotrypsin in aqueous solution. Pulse radiolysis and inactivation studies. Radiat. Res. 54, 375387.CrossRefGoogle Scholar
Adams, G. E., Bisby, R. H., Cundall, R. B., Redpath, J. L. & Willson, R. L. (1972 b). Selective free radical reactions with proteins and enzymes. Inactivation of ribonuclease. Radiat. Res. 49, 290299.CrossRefGoogle ScholarPubMed
Adams, G. E. & Redpath, J. L. (1974). Selective free-radical reactions with proteins and enzymes. Pulse radiolysis and inactivation studies on papain. Int. J. Radiat. Biol. 25, 129138.Google ScholarPubMed
Adams, G. E., Redpath, J. L., Bisby, R. H. & Cundall, R. B. (1972 c). The use of free radical probes in the study of mechanisms of enzyme inactivation. Isr. J. Chem. 10, 10791093.CrossRefGoogle Scholar
Adams, G. E., Redpath, J. L., Bisby, R. H. & Cundall, R. B. (1973 b). Selective free radical reactions with proteins and enzymes. Reactions of inorganic radical anions with trypsin. J. Chem. Soc. Faraday Trans. I69, 16081617.CrossRefGoogle Scholar
Adams, G. E. & Wardman, P. (1977). Free radicals in biology: The pulse radiolysis approach. In Free Radicals in Biology, vol. 3 (ed. Pryor, W. A.), pp. 5395. New York: Academic Press.CrossRefGoogle Scholar
Adams, G. E., Willson, R. L., Aldrich, J. E. & Cundall, R. B. (1969). On the mechanism of the radiation-induced inactivation of lysozyme in dilute aqueous solution. Int. J. Radiat. Biol. 16, 333342.Google ScholarPubMed
Adams, G. E., Willson, R. L., Bisby, R. H. & Cundall, R. B. (1971). On the mechanism of the radiation-induced inactivation of ribonuclease in dilute aqueous solution. Int. J. Radiat. Biol. 20, 405415.Google ScholarPubMed
Adman, E. T., Stenkamp, R. E., Sieker, L. C. & Jensen, L. H. (1978). A Crystallographic model for azurin at 3A resolution. J. molec. Biol. 123, 3547.CrossRefGoogle Scholar
Anbar, M., Bambenek, M. & Ross, A. B. (1973). Selected Specific Rates of Reactions of Transients from Water in Aqueous Solutions. I. Hydrated Electrons. Nat. Stand. Ref. Data. Ser., Nat. Bur. Stand. (U.S.), no. 43.Google Scholar
Anbar, M. & Hart, E. J. (1964). The reactivity of aromatic compounds toward hydrated electrons. J. Am. chem. Soc. 86, 56335637.CrossRefGoogle Scholar
Andersen, M. E., Moffat, J. K. & Gibson, Q. H. (1971). The kinetics of ligand binding and of the association-dissociation reactions of human hemoglobin. Properties of deoxyhemoglobin dimers. J. biol. Chem. 246, 27962807.CrossRefGoogle ScholarPubMed
Anderson, R. F. (1976). Electron transfer and equilibria between pyridinyl radicals and FAD. Ber. Bunsenges. Phys. Chem. 80, 969972.CrossRefGoogle Scholar
Anderson, R. F., Patel, K. B. & Adams, G. E. (1977). Critical residues in D-amino acid oxidase. A pulse radiolysis and inactivation study. Int. J. Radiat. Biol. 32, 523531.Google ScholarPubMed
Antonini, E., Chiancone, E. & Brunori, M. (1967). Studies on the relations between molecular and functional properties of hemoglobin. VI. Observations on the kinetics of hemoglobin reactions in concentrated salt solutions. J. biol. Chem. 242, 43604366.CrossRefGoogle ScholarPubMed
Armstrong, R. C. & Swallow, A. J. (1969). Pulse and gamma-radiolysis of aqueous solutions of tryptophan. Radiat. Res. 40, 563579.CrossRefGoogle ScholarPubMed
Bansal, K. M. & Fessenden, R. W. (1976). Pulse Radiolysis studies of the oxidation of phenols by SO4– and Br2– in aqueous solutions. Radiat. Res. 67, 18.CrossRefGoogle ScholarPubMed
Baverstock, K., Cundall, R. B., Adams, G. E. & Redpath, J. L. (1974). Selective free radical reactions with proteins and enzymes. The inactivation of α-chymotypsin. Int. J. Radiat. Biol. 26, 3946.Google Scholar
Benesch, R. E. & Benesch, R.The acid strength of the -SH group in cysteine and related compounds. J. Am. chem. Soc. 77, 58775881.CrossRefGoogle Scholar
Bettelheim, A. & Faraggi, M. (1977). The reduction of Cu(II) complexes of histidine and histidyl peptides. A pulse radiolysis study. Radiat. Res. 72, 7180.CrossRefGoogle ScholarPubMed
Bielski, B. H. J. & Chan, P. C. (1975). Kinetic study by pulse radiolysis of the lactate dehydrogenase-catalyzed chain oxidation of nicotinamide adenine nucleotide by HO2 and O2–, radicals. J. biol. Chem. 250, 318321.CrossRefGoogle ScholarPubMed
Bisby, R. H., Cundall, R. B., Adams, G. E. & Redpath, J. L. (1974). Selective free radical reactions with proteins and enzymes. Inactivation of subtilisin Carlsberg and subtilisin Novo. J. Chem. Soc. Faraday Trans. 170, 22102218.CrossRefGoogle Scholar
Bisby, R. H., Cundall, R. B., Redpath, J. L. & Adams, G. E. (1976). One-electron reduction reactions with enzymes in solution. Pulse radiolysis study. J. Chem. Soc. Faraday Trans. 172, 5163.CrossRefGoogle Scholar
Bishop, W. P. & Dorfman, L. M. (1970). Pulse radiolysis studies. XVI. Kinetics of the reaction of gaseous hydrogen atoms with molecular oxygen by fast Lyman-α absorption spectrophotometry. J. chem. Phys. 51, 32103216.CrossRefGoogle Scholar
Blackburn, R., Erkol, A. Y., Phillips, G. O. & Swallow, A. J. (1974). One electron reactions in some cobalamins. J. Chem. Soc. Faraday Trans 170, 16931701.CrossRefGoogle Scholar
Blackburn, R., Kyaw, M., Phillips, G. O. & Swallow, A. J. (1975). Free radical reactions in the coenzyme B12 system. J. Chem. Soc. Faraday Trans 171, 22772287.CrossRefGoogle Scholar
Blake, C. C. F., Johnson, L. W., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1967). On the conformation of the hen egg white lysozyme molecule. Proc. R. Soc. B 167, 365377.Google ScholarPubMed
Boag, J. W. (1963). Physical methods in radiation chemistry and in radiobiology. In Action Chimiques et Biologiques des Radiations, vol. VI (ed. Haissinski, M.), pp. 170. Paris: Masson.Google Scholar
Boag, I. W. & Adams, G. E. (1965). Cellular Radiobiology. Baltimore: Williams and Wilkins.Google Scholar
Boden, N., Holmes, M. C. & Knowles, P. F. (1974). Binding of Water to ‘Types I and II’ Cu2+ in proteins. Biochem. biophys. Res. Commun. 57, 845848.CrossRefGoogle ScholarPubMed
Bonifacic, M. & Asmus, K. D. (1976). Free radical oxidation of organic disulfides. J. Phys. Chem. 80, 24262430.CrossRefGoogle Scholar
Bonifacic, M., Möckel, H., Bahnemann, D. & Asmus, K. D. (1975 a). Formation of positive ions and other primary species in the oxidation of sulphides by hydroxyl radicals. J. Chem. Soc. Perkins II, 675685.CrossRefGoogle Scholar
Bonifacic, M., Schäfer, K., Möckel, H. & Asmus, K. D. (1975 b). Primary steps in the reactions of organic disulfides with hydroxyl radicals in aqueous solution. J. Phys. Chem. 79, 14961502.CrossRefGoogle Scholar
Braams, R. (1966). Rate constants of hydrated electron reactions with amino acids. Radiat. Res. 27, 319329.CrossRefGoogle ScholarPubMed
Braams, R. (1967). Rate constants of hydrated electron reactions with peptides and proteins. Radiat. Res. 31, 826.CrossRefGoogle ScholarPubMed
Braams, R. & Ebert, M. (1967). Reactions of proteins with hydrated electrons: the effect of conformation on the reaction rate constant. Int. J. Radiat. Biol. 13, 195197.Google ScholarPubMed
Bronskill, M. J., Taylor, W. B., Wolff, R. K. & Hunt, J. W. (1970). Design and performance of a pulse radiolysis system capable of picosecond time resolution. Rev. scient. Instrum. 41, 333340.CrossRefGoogle ScholarPubMed
Brühlmann, U. & Hayon, E. (1974). One-electron redox reactions of watersoluble vitamins. I. Nicotinamide (vitamins B5) and related compounds. J. Am. chem. Soc. 96, 61696175.CrossRefGoogle ScholarPubMed
Buchanan, J. D., Armstrong, D. A., Greenstock, C. L. & Ruddock, G. W. (1977). Pulse radiolysis of lactate dehydrogenase. Int. J. Radiat. Biol. 32, 247257.Google ScholarPubMed
Butler, J., De, Kok J., De, Weille J. R., Koppenol, W. & Braams, R. (1977). Mechanism of the reaction of hydrated electrons with ferrocytochrome c. Biochim. biophys. Acta 459, 207215.CrossRefGoogle ScholarPubMed
Butler, J., Jayson, G. G. & Swallow, A. J. (1976). One-electron reduction of a ferrihaem. J. Chem. Soc. Faraday Trans. 172, 13911402.CrossRefGoogle Scholar
Buxton, C. V. & Sellers, R. M. (1977). The radiation chemistry of metal irons in aqueous solution. Coord. Chem. Revs 22, 195274.CrossRefGoogle Scholar
Cassoly, R. & Gibson, Q. (1972). The kinetics of ligand binding to hemoglobin valency hybrids and the effect of anions. J. biol. Chem. 247, 73327341.CrossRefGoogle ScholarPubMed
Chan, P. C. & Bielski, B. H. J. (1975). Lactate dehydrogenase-catalyzed stereospecific hydrogen atom transfer from reduced nicotinamide adenine dinucleotide to dicarboxylate radicals. J. biol. Chem. 250, 72667271.CrossRefGoogle ScholarPubMed
Chan, S. S., Nordlund, T. M., Frauenfelder, H., Harrison, J. E. & Gunsalus, I. C. (1975). Enzymatic reduction of nicotinamide adenine dinucleotide phosphate induced by radiolysis. J. biol. Chem. 250, 716719.CrossRefGoogle ScholarPubMed
Clement, J. R., Armstrong, D. A., Klassen, N. V. & Gillis, H. A. (1972). Pulse radiolysis of aqueous papain. Can. J. Chem. 50, 28332839.CrossRefGoogle Scholar
Clement, J. R., Lee, N. T., Klapper, M. H. & Dorfman, L. M. (1976). Pulse radiolytic investigation of single heme group reduction in human methemoglobin. J. biol. Chem. 251, 20772082.CrossRefGoogle Scholar
D'Arcy, J. B. & Sevilla, M. D. (1979). An electron spin resonance study of U.C. electron reaction with peptides. Competitive mechanisms – deamination vs. protonation. Radiat. Phys. Chem. (in the press).Google Scholar
Davies, J. V., Ebert, M. & Shalek, R. J. (1968). The radiolysis of dilute solutions of lysozyme. II. Pulse radiolysis studies with cysteine and Oxygen. Int. J. Radiat. Biol. 14, 1927.Google ScholarPubMed
Davies, J. V., Moors, J. S. & Mudher, S. (1978). Implication of protein aromatic amino acids in conconavalin A-carbohydrate interactions. A radiolytic study. Int. J. Radiat. Biol. 33, 1119.Google Scholar
Davis, L. A., Schejter, A. & Hess, G. P. (1974). Alkaline isomerization of oxidized cytochrome c. Equilibrium and kinetic measurements. J. biol. Chem. 249, 26242632.CrossRefGoogle ScholarPubMed
De, Kok J., Butler, J., Braams, R. & Van, Gelder B. F. (1977). The reduction of porphyrin cytochrome c by hydrated electrons and the subsequent electron transfer reaction from reduced porphyrin cytochrome c to ferricytochrome c. Biochim. biophys. Acta 460, 290298.Google Scholar
Dorfman, L. M. (1963). Pulse radiolysis: fast reaction studies in radiation chemistry. Science, N.Y. 141, 493498.CrossRefGoogle ScholarPubMed
Dorfman, L. M. & Adams, G. E. (1973). Reactivity of the Hydroxyl Radical in Aqueous Solutions. Nat. Stand. Ref. Data Ser., Nat. Bur. Stand (U.S.), no. 46.CrossRefGoogle Scholar
Dorfman, L. M., Jou, F. Y. & Wageman, R. (1971). Solvent dependence of the optical absorption spectrum of the solvated electron. Ber. Bunsen. Phys. Chemie 75, 681685.CrossRefGoogle Scholar
Dorfman, L. M. & Matheson, M. S. (1965). Pulse radiolysis. In Prog. React. Kinetics, vol. III (ed. Porter, G.), pp. 237261. Oxford: Pergamon Press.Google Scholar
Draper, R. D. & Ingraham, L. L. (1968). A potentiometric study of the flavin semiquinone equilibrium. Arch. Biochem. Biophys. 125, 802808.CrossRefGoogle ScholarPubMed
Dudley, K. H., Ehrenberg, A., Hemmerich, P. & Muller, F. (1964). Spektren und Strukturen der am Flavin-Redoxsystem beteiligten Partikein. Studien in der Flavinreihe. IX. Helv. chim. Acta 47, 13541383.CrossRefGoogle Scholar
Eadsforth, C. V., Power, D. M., Thomas, E. W. & Davies, J. V. (1977). Interactions of alkyl sulfates with bovine-serum albumin studied using eaq- as a probe. Int. J. Radiat. Biol. 31, 257264.Google ScholarPubMed
Eadsforth, C. V., Power, D. M., Thomas, E. W. & Davies, J. V. (1976). Investigation of the interaction of alkyl sulphates with serum albumin using the thiocyanate radical ion (SCN)2. Int. J. Radiat. Biol. 30, 449457.Google ScholarPubMed
Ehrenberg, A., Muller, F. & Hemmerich, P. (1967). Basicity, visible spectra, and electron spin resonance of flavosemiquinone anions. Eur. J. Biochem. 2, 286293.CrossRefGoogle ScholarPubMed
Elving, P. J., Schmakel, C. O. & Santhanam, K. S. V. (1976). Nicotinamide – NAD sequence: redox processes and related behavior: behavior and properties of intermediate and final products. CRC Crit. Rev. Anal. Chem. 6, 164.CrossRefGoogle Scholar
Faraggi, M. & Bettelheim, A. (1977a). The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solutions. III. Histidyl peptides. Radiat. Res. 71, 311324.CrossRefGoogle ScholarPubMed
Faraggi, M. & Bettelheim, A. (1977b). The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solutions. Tryptophyl peptides. Radiat. Res. 72, 8188.CrossRefGoogle ScholarPubMed
Faraggi, M. & Klapper, M. H. (1979). One-electron reduction of flavodoxin: A fast kinetic study. J. biol. Chem. 254, 81398142.CrossRefGoogle ScholarPubMed
Faraggi, M., Klapper, M. H. & Dorfman, L. M. (1978a). Fast reaction kinetics of one-electron transfer in proteins. The histidyl radical. Mode of electron migration. J. Phys. Chem. 82, 508512.CrossRefGoogle Scholar
Faraggi, M., Klapper, M. H. & Dorfman, L. M. (1978b). Application of pulse radiolysis to the study of proteins: Chymotrypsin and trypsin. Biophys. J. 24, 307317.CrossRefGoogle Scholar
Faraggi, M., Klapper, M. H. & Dorfman, L. M. (1979). Electron reduction of Laccase and Stellacyanin (unpublished).Google Scholar
Faraggi, M. & Leopold, J. G. (1973). The reduction of cobalamin. A pulse radiolysis study. Biochem. biophys. Res. Comm. 50, 413420.CrossRefGoogle ScholarPubMed
Faraggi, M. & Leopold, J. G. (1976). Pulse radiolysis studies of electron-transfer reaction in molecules of biological interest. II. The reduction of Cu(II) peptide complexes. Radiat. Res. 65, 238249.CrossRefGoogle ScholarPubMed
Faraggi, M. & Pecht, I. (1971). The reaction of Pseudomonas azurin with the hydrated electron. Biochem. biophys. Res. Comm. 45, 842848.CrossRefGoogle Scholar
Faraggi, M. & Pecht, I. (1972). Elementary steps in the action of electron transfer proteins. Isr. J. Chem. 10, 10211039.CrossRefGoogle Scholar
Faraggi, M. & Pecht, I. (1973). The electron pathway to Cu(II) in ceruloplasmin. J. biol. Chem. 248, 31463149.CrossRefGoogle ScholarPubMed
Faraggi, M., Redpath, J. L. & Tal, Y. (1975). Pulse radiolysis studies of electron transfer reaction in molecules of biological interest. I. Reduction of a disulfide bridge by peptide radicals. Radiat. Res. 64, 452466.CrossRefGoogle ScholarPubMed
Faraggi, M. & Tal, Y.The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solution. II. Formation of radicals and electron transfer reactions. Radiat. Res. 62, 347356.CrossRefGoogle Scholar
Farhataziz, & Ross, A. B. (1977). Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radican ions. Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), no. 59.Google Scholar
Fee, J. A. (1975). Copper proteins. Systems containing the blue copper center. Struct. and Bond. 23, 160.CrossRefGoogle Scholar
Feitelson, J. & Hayon, E. (1973). Electron ejection and electron capture by phenolic compounds. J. Phys. Chem. 77, 1015.CrossRefGoogle Scholar
Felicioli, R., Montagnoli, G., Monti, S., Moore, J. A., Phillips, G. O. & Sosnowski, A. (1975). Radiation inactivation of rabbit muscle aldolase. Int. J. Radiat. Biol. 27, 525532.Google ScholarPubMed
Fessenden, R. W. (1964). Measurement of Short Radical Lifetimes by Electron Spin Resonance Methods. J. Phys. Chem. 68, 15081515.CrossRefGoogle Scholar
Finazzi-Agro, A., Rotilio, G., Avigliano, L., Guerrieri, P., Boffi, V. & Mondovi, B. (1970). Environment of copper in Pseudomonasfluorescens azurin: Fluorometric approach. Biochemistry 9, 20092014.CrossRefGoogle Scholar
Fridovich, I. (1972). Superoxide radical and superoxide dismutase. Acc. Chem. Res. 5, 321326.CrossRefGoogle Scholar
Fridovich, I. (1974). Superoxide dismutases. In Advances in Enzymology and Related Areas of Molecular Biology, vol. 41 (ed. Meister, A.), pp. 3597. New York: Wiley.CrossRefGoogle Scholar
Garrison, W. M. (1968). Radiation chemistry of organo-nitrogen compounds. In Current Topics in Radiation Research, vol. Iv (ed. Ebert, M. and Howard, A.), pp. 4394. Amsterdam: North-Holland.Google Scholar
Gibson, Q. H. (1970). The reaction of oxygen with hemoglobin and the kinetic basis of the effect of salt on binding of oxygen. J. biol. Chem. 245, 32853288.CrossRefGoogle ScholarPubMed
Goff, H. & Simic, M. G.Free radical reduction of hemin c. Biochm. biophys. Acta 392, 201206.CrossRefGoogle Scholar
Gordon, S., Hart, E. J. & Thomas, J. K. (1964). The ultraviolet spectra of transients produced in the radiolysis of aqueous solutions. J. Phys. Chem. 68, 12621264.CrossRefGoogle Scholar
Gordon, S., Schmidt, K. H. & Hart, E. J.A pulse radiolysis study of aqueous benzene solutions. J. Phys. Chem. 81, 104109.CrossRefGoogle Scholar
Grossweiner, L. I. (1976). Photochemical inactivation of enzymes. Curr. Topics Radiat. Res. II, 141199.Google Scholar
Harel, Y. & Meyerstein, D. (1974). On the mechanism of reduction of porphyrins. A pulse radiolytic study. J. Am. them. Soc. 96, 27202727.CrossRefGoogle ScholarPubMed
Hart, E. J. (1964). The hydrated electron. Science, N.Y. 146, 1925.CrossRefGoogle ScholarPubMed
Hayon, E., Ibata, T., Lichtin, N. N. & Simic, M. (1971). Sites of attack of hydroxyl radicals on amides in aqueous solution. II. The effects of branching to carbonyl and to nitrogen. J. Am. them. Soc. 93, 53885394.CrossRefGoogle Scholar
Ho, K., Klapper, M. H. & Dorfman, L. M. (1978). Kinetics of carbon monoxide binding to singly reduced human methemoglobin. J. biol. Chem. 253, 238241.CrossRefGoogle ScholarPubMed
Hoffman, M. Z. & Hayon, E. (1972). One-electron reduction of the disulfide linkage in aqueous solution. Formation, protonation, and decay kinetics of the RSSR-radical. J. Am. chem. Soc. 94, 79507957.CrossRefGoogle Scholar
Hoffman, M. Z. & Hayon, E. (1973). Pulse radiolysis study of sulfhydryl compounds in aqueous solution. J. Phys. Chem. 77, 990996.CrossRefGoogle Scholar
Hunkapiller, M. W., Smallcombe, S. H., Whitaker, D. R. & Richalus, J. H. (1973). Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry 12, 47324743.CrossRefGoogle ScholarPubMed
Hunt, J. W., Greenstock, C. L. & Bronskill, M. J. (1972). Design considerations for nanosecond pulse radiolysis studies using kinetic spectrophotometry. Int. J. Radiat. Phys. Chem. 4, 87105.CrossRefGoogle Scholar
Hunt, J. W. & Thomas, J. K. (1967). Pulse radiolysis studies using nanosecond pulses: observation of hydrated electrons. Radiat. Res. 32, 149163.CrossRefGoogle ScholarPubMed
Ilan, Y. A., Rabani, J. & Czapski, G. (1976). One electron reduction of metmyoglobin and methemoglobin and the reaction of the reduced molecule with oxygen. Biochim. biophys. Acta 446, 277286.CrossRefGoogle ScholarPubMed
Ilan, Y. A., Samuni, A., Chevion, M. & Czapski, G. (1978). Quarternary states of methemoglobin and its valance-hybrid. A pulse radiolysis study. J. biol. Chem. 253, 8286.CrossRefGoogle Scholar
Ilgenfritz, G. & Schuster, T. M. (1969). Kinetics of oxygen binding to human hemoglobin. Temperature jump relaxation studies. J. biol. Chem. 249, 29592973.CrossRefGoogle Scholar
Karmann, W., Granzow, A., Meissne, G. & Henglein, A. (1969). Die Pulsradiolyse Eifacher Merhaptane in Luft Frier Wässriger Lösung. Int. J. Radiat. Phys. Chem. I, 395405.CrossRefGoogle Scholar
Keene, J. P. (1960). Kinetics of radiation-induced chemical reactions. Nature, Lond. 188, 843844.CrossRefGoogle Scholar
Keene, J. P. (1964). Pulse radiolysis apparatus. J. scient. Instrum. 41, 493496.CrossRefGoogle Scholar
Klinman, J. P. (1972). The mechanism of enzyme-catalyzed reduced nicotinamide adenine dinucleotide-dependent reductions. Substituent and isotope effects in the yeast alcohol dehydrogenase reaction. J. biol. Chem. 247, 79777987.CrossRefGoogle ScholarPubMed
Klinman, J. P. (1976). Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme-catalyzed oxidation of aromatic alcohols. Biochemistry 15, 20182026.CrossRefGoogle ScholarPubMed
Koenig, S. H. & Brown, R. D. (1973). Anomalous relaxation of water protons in solutions of copper-containing proteins. Ann. N. Y. Acad. Sci. 222, 752763.CrossRefGoogle ScholarPubMed
Koeppe, R. E. & Stroud, R. M. (1976). Mechanism of hydrolysis by serine proteases: direct determination of the pKa's of aspartyl-102 and aspartyl-194 in bovine trypsin using difference infrared spectroscopy. Biochemistry 15, 34503458.CrossRefGoogle ScholarPubMed
Koppenol, W. M., Vroonland, C. A. J. & Braams, R. (1978). The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c. Biochim. biophys. Acta 503, 499508.CrossRefGoogle ScholarPubMed
Kosower, E. M. (1976). Pyridinyl radicals in biology. In Free Radicals in Biology, vol. II (ed. Pryor, W. A.), pp. 153. New York: Academic Press.Google Scholar
Kosower, E. M., Teuerstein, A., Burrows, H. D. & Swallow, A. J. (1978). Bimolecular reactions of pyridinyl radicals in water and the mechanism of NAD+NADH dehydrogenase reactions. J. Am. chem. Soc. 100, 51855190.CrossRefGoogle Scholar
Ladner, R. C., Heidner, E. J. & Perutz, M. F. (1977). The structure of horse methaemoglobin at 2.0 A resolution. J. molec. Biol. 114, 385414.CrossRefGoogle ScholarPubMed
Lambeth, D. O., Campbell, K. L., Zand, R. & Palmer, G. (1973). The appearance of transient species of cytochrome c upon rapid oxidation or reduction at alkaline pH. J. biol. Chem. 248, 81308136.CrossRefGoogle ScholarPubMed
Land, E. J. (1970). Pulse radiolysis: Very fast reactions and applications to biochemistry. Curr. Topics Rad. Res. Quart. 7, 105132.Google Scholar
Land, E. J. & Ebert, M. (1967). Pulse radiolysis studies of aqueous phenol. Water elimination from dihydroxycyclohexadienyl radicals to form phenoxyl. Trans. Faraday Soc. 63, 11811190.CrossRefGoogle Scholar
Land, E. J. & Swallow, A. J. (1968). One-electron reactions in biochemical systems as studied by pulse radiolysis. I. Nicotinamide adenine dinucleotide and related compounds. Biochim. biophys. Acta 162, 327337.CrossRefGoogle ScholarPubMed
Land, E. J. & Swallow, A. J. (1969). One-electron reactions in biochemical systems as studied by pulse radiolysis. II. Riboflavine. Biochemistry, 8, 21172125.CrossRefGoogle Scholar
Land, E. J. & Swallow, A. J. (1970). One-electron reactions of some mitochondrial components studied by pulse radiolysis. Biochem. J. 116, 16P.CrossRefGoogle ScholarPubMed
Land, E. J. & Swallow, A. J. (1971a). One-electron reactions in biochemical systems as studied by pulse radiolysis. IV. Oxidation of dihydronicotinamide adenine dinucleotide. Biochim. biophys. Acta 234, 3442.CrossRefGoogle ScholarPubMed
Land, E. J. & Swallow, A. J. (1971 b). One-electron reactions in biochemical systems as studied by pulse radiolysis. V. Cytochrome c. Archs. Biochein. Biophys. 145, 365372.CrossRefGoogle ScholarPubMed
Land, E. J. & Swallow, A. J. (1974). One-electron reactions in biochemical systems as studied by pulse radiolysis. VI. Stages in the reduction of ferricytochrome c. Biochim. biophys. Acta 368, 8696.CrossRefGoogle ScholarPubMed
Land, E. J. & Swallow, A. J. (1975). Electron transfer from pyridinyl radicals to cytochrome c. Ber. Bunsenge Phys. Chem. 79, 436437.CrossRefGoogle Scholar
Lichtin, N. N., Ogdan, J. & Stein, G. (1972). Fast consecutive radical processes within the ribonuclease molecule in aqueous solution. II. Reaction with OH radicals and hydrated electrons. Biochim. biophys. Acta 276, 124142.CrossRefGoogle ScholarPubMed
Lichtin, N. N., Shafferman, A. & Stein, G. (1973 a). Reaction of cytochrome c with one-electron redox reagents. I. Reduction of ferricytochrome c by the hydrated electron produced by pulse radiolysis. Biochim. biophys. Acta 314, 117135.CrossRefGoogle ScholarPubMed
Lichtin, N. N., Shafferman, A. & Stein, G. (1973b). Reaction of hydrated electrons with ferricytochrome c. Science, N.Y. 179, 680683.CrossRefGoogle ScholarPubMed
Lilie, J. (1972). Pulse radiolysis and polarography. II. Use of an on-line computer in the determination of the half-wave potentials of short- lived inorganic radicals. J. Phys. Chem. 76, 14871492.CrossRefGoogle Scholar
Lynn, K. R. & Purdie, J. W. (1976). Some pulse and gamma radiolysis studies of tyrosine and its glycyl peptides. Int. J. Radiat. Phys. Chem. 8, 685689.CrossRefGoogle Scholar
Mandel, N., Mandel, G., Trus, B. L., Rosenberg, J., Carlson, G. & Dickerson, R. E. (1977). Tuna cytochrome c at 2·0 Å resolution. III. Coordinate optimization and comparison of structures. J. biol. Chem. 252, 46194636.CrossRefGoogle ScholarPubMed
Marketos, D. G.Marketou-Mantaka, A. & Stein, G. (1974). Reaction of the hydrated electron with benzene studied by pulse radiolysis. J. Phys. Chem. 78, 19871992.CrossRefGoogle Scholar
Markley, J. L. (1975). Observation of histidine residues in proteins by means of nuclear magnetic resonance spectroscopy. Acc. Chem. Res. 8, 7080.CrossRefGoogle Scholar
Markley, J. L. & Ibanez, I. B. (1978). Zymogen activation in serine proteases. Proton magnetic resonance pH titration studies of the two histidines of bovine chymotrypsinogen A and chymotrypsin A. Biochemistry 17, 46274640.CrossRefGoogle Scholar
Markley, J. L. & Porubcan, M. A. (1976). The charge-relay system of serine proteases: proton magnetic resonance titration studies of the four histidines of porcine trypsin. J. molec. Biol. 102, 487509.CrossRefGoogle ScholarPubMed
Massey, V. & Palmer, G. (1966). On the existence of spectrally distinct classes of flavoprotein semiquinones. A new method for the quantitative production of flavoprotein semiquinones. Biochemistry 5, 31813188.CrossRefGoogle ScholarPubMed
Masuda, T., Ovadia, J. & Grossweiner, L. I. (1971). The pulse radiolysis and inactivation of trypsin. Int. J. Radiat. Biol. 20, 447459.Google ScholarPubMed
Matheson, M. S. & Dorfman, L. M. (1960). Detection of short-lived transients in radiation chemistry. J. chem. Phys. 32, 18701871.CrossRefGoogle Scholar
Matheson, M. S. & Dorfman, L. M. (1969). Pulse Radiolysis. Cambridge, Mass.: M.I.T. Press.Google Scholar
Mayhew, S. G. (1971). Properties of two clostridial flavodoxins. Biochim. biophys. Acta 235, 276288.CrossRefGoogle ScholarPubMed
Mayhew, S. G. & Ludwig, M. L. (1975). Flavodoxins and electron-transferring flavoproteins. In The Enzymes, vol. XII, 3rd ed. (ed. Boyer, P. D.), pp. 57118. New York: Academic Press.Google Scholar
Mccarthy, R. L. & Maclachlan, A. (1960). Transient benzyl radical reactions produced by high-energy radiation. Trans. Faraday Soc. 56, 11871200.CrossRefGoogle Scholar
Meisel, D. & Neta, P. (1975). One-electron reduction potential of riboflavine studied by pulse radiolysis. J. Phys. Chem. 79, 24592461.CrossRefGoogle Scholar
Michael, B. D. & Hart, E. J. (1970). The rate constants of hydrated electron, hydrogen atom, and hydroxyl radical reactions with benzene, I, 3-cyclo-hexadiene, I, 4-cyclohexadiene, and cyclohexene. J. Phys. Chem. 74, 28782884.CrossRefGoogle Scholar
Michaelis, L., Schubert, M. P. & Smythe, C. V. (1936). Potentiometric study of the flavins. J. biol. Chem. 116, 587607.CrossRefGoogle Scholar
Mittal, J. P. & Hayon, E. (1974). Interaction of hydrated electrons with phenylalanine and related compounds. J. Phys. Chem. 78, 17901794.CrossRefGoogle Scholar
Möckel, H., Bonifacic, M. & Asmus, K. D. (1974). Formation of positive ions in the reaction of disulfides with hydroxyl radicals in aqueous solution. J. Phys. Chem. 78, 282284.CrossRefGoogle Scholar
Moorthy, P. N. & Hayon, E. (1975). One-electron redox reactions of water-soluble vitamins. III. Pyridoxine and pyridoxal phosphate (vitamin B6). J. Am. chem. Soc. 97, 20482052.CrossRefGoogle ScholarPubMed
Moorthy, P. N. & Hayon, E. (1976). One-electron redox reactions of water- soluble vitamins. II. Pterin and folic acid. J. org. Chem. 41, 16071613.CrossRefGoogle ScholarPubMed
Moorthy, P. N. & Hayon, E. (1977). One-electron redox reactions of water- soluble vitamins. IV. Thiamin (vitamin B1), biotin, and pantothenic acid. J. org. Chem. 42, 879885.CrossRefGoogle Scholar
Neta, P. & Fessenden, R. W. (1970). Electron spin resonance study of deamination of amino acids by hydrated electrons. J. Phys. Chem. 74, 22632266.CrossRefGoogle ScholarPubMed
Neta, P. & Fessenden, R. W. (1974a). Hydroxyl radical reactions with phenols and anilines as studied by electron spin resonance. J. Phys. Chem. 78, 523529.CrossRefGoogle Scholar
Neta, P. & Patterson, L. K. (1974b). Substituted pyridinyl radicals in aqueous solutions. Formation, reactivity, and acid-base equilibria. J. Phys. Chem. 78, 22112217.CrossRefGoogle Scholar
Neta, P., Simic, M. & Hayon, E. (1969). Pulse radiolysis of aliphatic acids in aqueous solutions. I. Simple monocarboxylic acids. J. Phys. Chem. 73, 42074213.CrossRefGoogle Scholar
Nilsson, K. (1972). The reduction of ferricytochrome c studied by pulse radiolysis. Isr. J. Chem. 10, 10111019.CrossRefGoogle Scholar
Pearson, M. J. & Salmon, G. A. (1974). Pulse radiolysis of haemiproteins. Radiat. Res. 59, 104105.Google Scholar
Pecht, I. & Faraggi, M. (1971). Reduction of copper(II) in fungal laccase by hydrated electrons. Nature, Lond. 233, NB 116118.Google ScholarPubMed
Pecht, I. & Faraggi, M. (1972). Electron transfer to ferricytochrome C: Reaction with hydrated electrons and conformational transitions involved. Proc. natn. Acad. Sci. U.S.A. 69, 902906.CrossRefGoogle ScholarPubMed
Pecht, I. & Goldberg, M. (1973). Electron transfer pathways to and within redox proteins: pulse radiolysis studies. In Fast Processes Radiat. Chem. Biol. Proc. L. H. Gray Conf., 5th (ed. Adams G. E., Fielden E. M. & Michael B. D.,) pp. 277284.Google Scholar
Pecht, I. & Rosen, P. (1973). The kinetics of the cytochrome c-azurin redox equilibrium. Biochem. biophys. Res. Commun. 50, 853858.CrossRefGoogle ScholarPubMed
Phillips, G. O., Power, D. M., Robinson, C. & Davies, J. V. (1973). Interactions of bovine serum albumin with penicillins and cephalosporins studied by pulse radiolysis. Biochim. biophys. Acta 295, 817.CrossRefGoogle ScholarPubMed
Posener, M. L., Adams, G. E., Wardman, P. & Cundall, R. B. (1976). Mechanism of tryptophan oxidation by some inorganic radical-anions: a pulse radiolysis study. J. Chem. Soc. Faraday Trans. 172, 22312239.CrossRefGoogle Scholar
Raap, A., Van Leeuwen, J. W., Rollema, H. S. & De Bruin, S. H. (1977). Pulse-radiolytic studies of the spin-state transitions in aquomethemoglobin after reduction of a single heme group. FEBS. Lett. 81, 111114.CrossRefGoogle ScholarPubMed
Rao, P. S., Simic, M. & Hayon, E. (1975). Pulse radiolysis study of imidazole and histidine in water. J. Phys. Chem. 79, 12601263.CrossRefGoogle Scholar
Redpath, J. L., Santus, R., Ovadia, J. & Grossweiner, L. I. (1975a). The role of metal ions in the radiosensitivity of metalloproteins. Model experiments with bovine carbonic anhydrase. Int. J. Radiat. Biol. 28, 243253.Google ScholarPubMed
Redpath, J. L., Santus, R., Ovadia, J. & Grossweiner, L. I. (1975b). The oxidation of tryptophan by radical anions. Int. J. Radiat. Biol. 27, 201204.Google ScholarPubMed
Richards, F. M. & Wyckoff, M. W. (1971). Bovine pancreatic ribonuclease. In The Enzymes, vol. IV, 3rd ed. (ed. Boyer, P. D.), pp. 647806. New York: Academic Press.Google Scholar
Riesz, P. & Morris, T. (1965). The radiolysis of aqueous methylammoniumion. Radiat. Res. 26, I–II.CrossRefGoogle Scholar
Roberts, P. B. (1973). A radiation chemical study of the inactivation and active site composition of carboxypeptidase A. Int. J. Radiat. Biol. 24, 143152.Google ScholarPubMed
Robillad, G. & Shulman, R. G. (1974). High resolution nuclear magnetic resonance studies of the active site of chymotrypsin. II. Polarization of histidine 57 by substrate analogues and competitive inhibitors. J. molec. Biol. 86, 541558.CrossRefGoogle Scholar
Rodkey, F. L. & Ball, E. G. (1950). Oxidation-reduction potentials of the cytochrome c system. J. biol. Chem. 182, 1728.CrossRefGoogle Scholar
Rollema, H. S., Scholberg, H. P. F., De Bruin, S. H. & Raap, A. (1976). The kinetics of carbon monoxide binding to partially reduced methemoglobin. Biochem. biophys. Res. Comm. 71, 9971003.CrossRefGoogle ScholarPubMed
Ross, A. B. (1975). Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution. Hydrated Electron, Supplemental Data. Mat. Stand. Ref. Data Ser., Nat. Bur. (U.S.), no. 43, Suppl.Google Scholar
Rustgi, S., Joshi, A., Riesz, P. & Friedberg, F. (1977). E.s.r. of spin trapped radicals in aqueous solutions of amino acids. Reactions of the hydrated electron. Int. J. Radiat. Biol. 32, 533552.Google ScholarPubMed
Rustgi, S. & Riesz, P. (1978). Hydrate electron-initiated main-chain scission in peptides. An e.s.r. and spin-trapping study. Int. J. Rad. Biol. 34, 449460.Google ScholarPubMed
Salemne, F. R. (1977). Structure and function of cytochromes c. Ann. Rev. Biochem. 46, 299329.CrossRefGoogle Scholar
Salhany, J. M., Castillo, C. L. & Ogawa, S. (1976). Carbon monoxide binding properties of hemoglobin. M. Iwate. Biochemistry 15, 53445349.Google ScholarPubMed
Sawicki, C. A. & Gibson, Q. H. (1977). Properties of the T state of human oxyhemoglobin studied by laser photolysis. J. biol. Chem. 252, 75387547.CrossRefGoogle Scholar
Scheijter, A. (1971). Conformation changes in cytochrome c reactions in Probes of Structure and Function of Macromolecules and Membranes. Vol. II. Probes of Enzymes and Henzoproteins (ed. Chance, B., Yonetani, T. and Mildvan, A. S.), pp. 451457. New York: Academic Press.Google Scholar
Schmidt, K. H. & Buck, W. L. (1966). Mobility of the Hydrated Electron. Science, N.Y., 151, 7071.CrossRefGoogle ScholarPubMed
Sevilla, M. D. (1970). Radicals formed by electron attachment to peptides. J. Phys. Chem. 74, 33663372.CrossRefGoogle ScholarPubMed
Shafferman, A. & Stein, G. (1974). Reduction of ferricytochrome c by some free radical agents. Science, N. Y. 183, 428430.CrossRefGoogle ScholarPubMed
Shafferman, A. & Stein, G. (1975). Study of biochemical redox processes by the technique of pulse radiolysis. Biochim. biophys. Acta 416, 287317.CrossRefGoogle ScholarPubMed
Simic, M. & Hayon, E. (1971). Reductive deamination of oligopeptides by solvated electrons in aqueous solution. Radiat. Res. 48, 244255.CrossRefGoogle ScholarPubMed
Simic, M. & Hayon, E. (1973). Interaction of solvated electrons with the amide and imide groups. Acid base properties of RC(OA)NH2, radicals. J. Phys. Chem. 77, 9961001.CrossRefGoogle Scholar
Simic, M. & Hoffman, M. Z. (1970). Addition of hydrogen atoms to glutathione disulfide in aqueous solution. J. Am. chem. Soc. 92, 60966098.CrossRefGoogle Scholar
Simic, M. G. & Taub, I. A. (1978). Fast electron transfer processes in cytochrome c and related metalloproteins. Biophys. J. 24, 285306.CrossRefGoogle ScholarPubMed
Smaller, B., Remko, J. R. & Avery, E. C. (1968). Electron paramagnetic resonance studies of transient free radicals produced by pulse radiolysis. J. Chem. Phys. 48, 51745181.CrossRefGoogle Scholar
Solomon, E. I., Hare, J. W. & Gray, H. B. (1976). Spectroscopie studies and a structural model for blue copper centers in proteins. Proc. natn Acad. Sci. (U.S.A.) 73, 13891393.CrossRefGoogle Scholar
Stroud, R. M., Kossiakoff, A. A. & Chambers, J. L. (1977). Mechanisms of zymogen activation. A. Rev. Biophys. Bioeng. 6, 177193.CrossRefGoogle ScholarPubMed
Tal, Y. & Faraggi, M. (1975). The reaction of the hydrated electron with amino acids, peptides and proteins in aqueous solution. I. Factors affecting the rate constants. Radiat. Res. 62, 337346.CrossRefGoogle ScholarPubMed
Tung, T. L. & Kuntz, R. R. (1973). Hydrated Electron Reactions with Thiols in Acidic Aqueous Solutions. Radiat. Res. 55, 256264.CrossRefGoogle ScholarPubMed
Van Leeuwen, J. W., Raap, A., Koppenol, W. H. & Nauta, H. (1978). A tunnelling model to explain the reduction of ferricytochrome c by H or OH radicals. Biochim. biophys. Acta 503, 19.CrossRefGoogle ScholarPubMed
Wilgus, H. B. & Stellwagen, E. (1974). Alkaline isomerization of ferricytochrome c. Identification of the lysine ligand. Proc. natn Acad. Sci. (U.S.A.) 71, 28922894.CrossRefGoogle ScholarPubMed
Wilting, J., Braams, R., Nauta, H. & Van Buuren, K. J. H. (1972). The reduction mechanism of ferricytochrome c. Biochim. biophys. Acta 283, 543547.CrossRefGoogle ScholarPubMed
Wilting, J., Raap, A., Braams, R., De Bruin, S. H., Rollema, H. S. & Janssen, L. H. M.Conformational changes and ligand dissociation kinetics following rapid reduction of human aquomethemoglobin and horse aquometmyoglobin by hydrated electrons. J. biol. Chem. 249, 63256330.CrossRefGoogle Scholar
Wilting, J., Van Buuren, K. J. H., Braams, R. & Van Gelder, B. F. (1975). The mechanism of reduction of cytochrome c as studied by pulse radiolysis. Biochim. biophys. Acta 376, 285297.CrossRefGoogle ScholarPubMed
Winfield, M. E. (1965).Electron transfer within and between haemoprotein molecules. J. molec. Biol. 12, 600611.CrossRefGoogle ScholarPubMed