Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T00:53:43.403Z Has data issue: false hasContentIssue false

Anomalous small angle scattering

Published online by Cambridge University Press:  17 March 2009

H. B. Stuhrmann
Affiliation:
European Molecular Biology Laboratory, EMBL Outstation, Hamburg, at the Deutsches Elektronensynchrotron (DESY), Notkestrasse 85, D2000 Hamburg 52 /Federal Republic of Germany

Extract

Isomorphous replacement methods have been revolutionary in macromolecular structure research. This has been most clearly demonstrated in protein crystallography. Specific binding of heavy atoms to protein molecules in the crystalline state provides the necessary reference for the phase determination of each Bragg reflexion and opens the way to the direct structure determination to atomic resolution from X-ray diffraction.

Are isomorphous replacement methods applicable to the investigation of non-crystalline structures as well? And if so, would there be any reasonable advantage?

An answer has been given by neutron scattering. Macromolecular assemblies of nucleic acids, proteins and lipids are most easily studied in H2O /D2O mixtures, as the scattering density of the solvent can be adjusted to any of the chemically different partial structures (Stuhrmann, 1974).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VI. REFERENCES

Büldt, G., Phillips, J. & Stuhrmann, H. B. (1981). Manuscript in preparation.Google Scholar
Fischbach, F. A. & Anderegg, J. W. (1965). An X-ray scattering study of ferritin and apoferritin. J. molec. Biol. 14, 458473.Google Scholar
Freund, H. (1975). Anomalous Scattering of X-rays in Copper. In Anomalous Scattering (ed. Ramaseshan, S. and Abrahams, S. C.), pp. 6984. Copenhagen: Munksgaard.Google Scholar
Hoppe, W. & Jakubowski, U. (1975). The Determination of Phases of Erythrocruorin using the two Wavelength Method with Iron as Anomalous Scatterer. In Anomalous Scattering (ed. Ramaseshan, S. and Abrahams, S. C.), pp. 437461. Copengagen: Munksgaard.Google Scholar
Hermes, C., Parak, F., Moessbauer, R. L. & Sturhmann, H. B. (1980). Research Project at EMBL, Hamburg.Google Scholar
Lye, R. C., Fairclough, R. A., Hodgson, K. O., Phizackerley, R. P. & Doniach, S. (1980 a). Structural studies of the acetylcholin receptor and of structure in membranes and solution using X-ray anomalous scattering. Proposal nos. 449 /450, in Stanford Synchrotron Radiation Laboratory Activity Report, 80 /01, p. VII77.Google Scholar
Lye, C., Phillips, J. C., Kaplan, D., Doniach, S. & Hodgson, K. O. (1980 b). White Line L-edge X-ray absorption spectra and their Implications for Anomalous Diffraction Studies of Biological Materials. Proc. natn. Acad. Sci. U.S.A., 77, 58845888.Google Scholar
Moore, P. B. & Engleman, D. M. (1979). On the Feasibility and Interpretation of Intersubunit Distance Measurements using Neutron Scattering. In Methods in Enzymology, vol. LIX, pp. 629638 (ed. Kivie, Moldave and Lawrence, Grossman), New York, San Francisco, London: Academic Press.Google Scholar
Moessbauer, R. L. (1975). The Application of Anomalous Dispersion of γ-radiation to the Structure Analysis of Macromolecular Crystals. In Anomalous Scattering (ed. Ramaseshan, S. and Abrahams, S. C.), pp. 463483. Copenhagen: Munksgaard.Google Scholar
Oberthür, R. (1975). Thesis, University of Mainz.Google Scholar
Phillips, J. C. Thesis (1980). Crystal Structure Determination using Synchrotron Radiation. Stanford University, U.S.A.Google Scholar
Phillips, J. C. & Hodgson, K. O. (1980). The use of anomalous scattering effects to phase diffraction patterns from macromolecules. Acta Crystallogr. A36, 856864.CrossRefGoogle Scholar
Rameseshan, S. & Abrahams, S. C. (1975). Anomalous Scattering. Copenhagen: Munksgaard.Google Scholar
Stuhrmann, H. B. (1970). Ein neues Verfahren zur Bestimmung der Oberflaechenform und der inneren Struktur von geloesten, globulaeren Proteinen aus Roentgenkleinwinkelmessungen. Z. phy. Chem. 72, 177184.Google Scholar
Stuhrmann, H. B. (1974). Neutron small angle scattering of biological macromolecules in solution. J. appl. Crystallogr. 7, 173178.CrossRefGoogle Scholar
Stuhrmann, H. B. (1976). Small angle scattering of proteins in solution. In Neutron Scattering for the Analysis of Biological Structures. Brookhaven Symposia, no. 27, IV, 319.Google Scholar
Stuhrmann, H. B. (1979). Neutronenstreunng an Biopolymeren. Chemie in unserer Zeit, 13, 11–22 (Verlag Chemie, D6940 Weinheim.)Google Scholar
Stuhrmann, H. B., Tardieu, A., Mateu, L., Sardet, C., Luzzati, V., Aggerbeck, L. & Scanu, A. M. (1975). Neutron scattering study of human serum low density lipoprotein. Proc. natn. Acad. Sci. U.S.A. 72, 22702273.CrossRefGoogle ScholarPubMed
Stuhrmann, H. B., Haas, J., Ibel, K., De, Wolf B., Koch, M. H. J., Parfait, R. & Crichton, R. R. (1976). New low resolution model for 50S Subunit of Escherichia coli Ribosomes. Proc. natn. Acad. Sci. U.S.A. 73, 23792383.CrossRefGoogle ScholarPubMed
Stuhrmann, H. B., Koch, M. H. J., Parfait, R., Haas, J., Ibel, K. & Crichton, R. R. (1977). Shape of the 50S subunit of Escherichia coli ribosomes. Proc. natn. Acad. Sci. U.S.A. 74, 23162320.CrossRefGoogle ScholarPubMed
Stuhrmann, H. B. (1980). Anomalous dispersion of small angle scattering of horse-spleen ferritin of the iron K-absorption edge. Acta Crystallogr. A36, 9961001.Google Scholar
Stuhrmann, H. B. & Notbohm, H. (1981). The configuration of the four iron atoms in dissolved human haemoglobin as studied by anomalous dispersion. Proc. natn. Acad. Sci. U.S.A. (in the press).Google Scholar
Stuhrmann, H. B. & Gabriel, A. (1981). A small angle camera at the storage ring DORIS for anomalous dispersion experiments. J. applied Crystallogr. (in the Press).Google Scholar
Stuhrmann, H. B. (1981). Anomalous X-ray scattering from macromolecular structures using synchrotron radiation. Krystallografiya (in the press).Google Scholar
Stuhrmann, H. B. & Laggner, P. (1981). (Manuscript in preparation).Google Scholar
Templeton, D. H., Templeton, L. K., Phillips, J. C. & Hodgson, K. O. (1980). Anomalous scattering of X-rays by cesium and cobalt measured with synchrotron radiation. Acta Crystallogr. A36, 436442.CrossRefGoogle Scholar
Ten, Eyck L. F. & Arnone, A. (1976). Three dimensional fourier synthesis of human deoxyhaemoglobin at 2.5 Å resolution. J. molec. Biol. 100, 311.Google Scholar
Vainshtein, B. K., Feigin, L. A., Lvov, Yu. M., Gvozdev, R. I., Marakushev, S. A. & Likhtenshtein, G. I. (1980). Determination of the distance between heavy-atom markers in haemoglobin and histidine decarboxylase in solution by small angle X-ray scattering. FEBS Lett. 116, 107110.Google Scholar
Winick, H. & Doniach, S. (1980). Synchrotron Radiation Research. New York: Plenum Publishing Corporation.Google Scholar
Worcester, D. L., Gillis, J. M., O'Brien, F. J. & Ibel, K. (1976). Neutron Diffraction Studies of Biological Membranes and Membrane Components. Brookhaven Symposia27.Google Scholar