Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T13:45:56.614Z Has data issue: false hasContentIssue false

Using the 6dF Galaxy Redshift Survey to Detect Gravitationally-lensed Quasars

Published online by Cambridge University Press:  05 March 2013

Daniel J. Mortlock
Affiliation:
Astrophysics Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom; [email protected] Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, United Kingdom
Michael J. Drinkwater
Affiliation:
School of Physics, University of Melbourne, Vic 3052, Australia; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is possible to detect gravitationally-lensed quasars spectroscopically if the spectra obtained during galaxy surveys are searched for the presence of quasar emission lines. The up-coming 6 degree Field (6dF) redshift survey on the United Kingdom Schmidt Telescope will involve obtaining ~105 spectra of near-infrared selected galaxies to a magnitude limit of K = 13. Applying previously developed techniques implies that at least one lens should be discovered in the 6dF survey, but that as many as ten could be found if quasars typically have BJK ~ 8. In this model there could be up to fifty lensed quasars in the sample, but most of them could only be detected by infrared spectroscopy.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Boyle, B. J., Shanks, T., & Peterson, B. A. 1988, MNRAS, 235, 935 CrossRefGoogle Scholar
Drinkwater, M. J., et al. 1997, MNRAS, 284, 85 Google Scholar
Folkes, S. R., et al. 1999, MNRAS, 308, 459 CrossRefGoogle Scholar
Huchra, J. P., Gorenstien, M., Kent, S., Shapiro, I., Smith, G., Horine, E., & Perley, R. 1985, AJ, 90, 691 Google Scholar
Jarrett, T. H., et al. 2000, AJ, 119, 2498 Google Scholar
Kochanek, C. S. 1992, ApJ, 397, 381 Google Scholar
Loveday, J. 2000, MNRAS, 312, 557 Google Scholar
Mortlock, D. J., & Webster, R. L. 2000, MNRAS, 319, 879 Google Scholar
Mortlock, D. J., & Webster, R. L. 2001, MNRAS, 321, 629 CrossRefGoogle Scholar
Mortlock, D. J., Madgwick, D. S., & Lahav, O. 2001, PASA, 18, 188 Google Scholar
Warren, S. J., Hewett, P. C., & Foltz, C. B. 2000, MNRAS, 312, 827 Google Scholar
Watson, F. G., Parker, Q. A., & Miziarski, S. 1998, in Optical Astronomical Instrumentation, ed. S. D'Odorico (Bellingham: SPIE), p. 834 Google Scholar
Watson, F. G., Parker, Q. A., Bogatu, G., Farrell, T. J., Hingley, B. E., & Miziarski, S. 2000, in Optical and IR Telescope Instrumentation and Detectors, ed. M. Iye & A. F. Moorwood (Bellingham: SPIE), p. 123 Google Scholar
Webster, R. L., Francis, P. J., Peterson, B. A., Drinkwater, M. J., & Masci, F. J. 1995, Nature, 375, 469 Google Scholar
York, D. G., et al. 2000, AJ, 120, 1579 Google Scholar