Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T12:37:44.283Z Has data issue: false hasContentIssue false

Uranus after Voyager 2 and the Origin of the Solar System

Published online by Cambridge University Press:  25 April 2016

A. J. R. Prentice*
Affiliation:
Department of Mathematics, Monash University

Abstract

The discoveries made by the Voyager 2 spacecraft at Uranus in January 1986 are discussed in the light of the modern Laplacian theory for the formation of the solar system. Various accounts of this theory, which has as its basis the concept of supersonic convective turbulence, have been presented at previous meetings of the ASA (Prentice 1977, 1979, 1981a). The most important confirmation by Voyager was the discovery of 2 new satellite groups near orbital radii 2½ RU and 3½ RU (RU = Uranus’ equatorial radius = 26, 200 km), as first predicted in 1977. The discovery that the densities of the Uranian satellites are consistent with these bodies having condensed in a single compositional class, consisting of anhydrous rock, NH3 ice and CH4.6H2O clathrate hydrate in normal solar proportions, confirms the hypothesis that the chemistry of all planetary/regular satellite systems are accounted for by a single choice of the turbulence parameter, namely β = 0.107 ±0.001. The implication of the Voyager data for the origin of comets is also discussed.

Type
Invited Papers
Copyright
Copyright © Astronomical Society of Australia 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfvén, H., and Arrhenius, G., 1975, ‘Structure and Evolutionary History of the Solar System’, p. 116 (Reidel, Dordrecht).Google Scholar
Brandt, J. C., 1966, Astrophys. J., 144, 1221.Google Scholar
Brown, R. H., Cruikshank, D. P., and Morrison, D., 1982, Nature, 300, 423.Google Scholar
Cole, K. D., 1961, Nature, 189, 31.Google Scholar
Ellsworth, K., and Schubert, G., 1983, Icarus, 54, 490.Google Scholar
Goldreich, P., and Tremaine, S., 1979, Nature, 111, 97.Google Scholar
Greenberg, R., Weidenschilling, S. J., Chapman, C. R., and Davis, D. R., 1984, Icarus, 59, 87.Google Scholar
ter Haar, D., 1967, Annu. Rev. Astron. Astrophys., 5, 267.Google Scholar
Hourigan, K., 1977, Proc. Astron. Soc. Aust., 3, 169.Google Scholar
Hourigan, K., 1981, PhD Thesis, Monash University.Google Scholar
Hoyle, F., 1960, Quart. J. R. Astron. Soc, 1, 28.Google Scholar
Hubbard, W. B., and MacFarlane, J. J., 1980, J. Geophys. Res., 85, 225.Google Scholar
Jeans, J. H., 1928, ‘Astronomy and Cosmogony’, p. 389 (Cambridge University Press, Cambridge).Google Scholar
Laplace, P. S. de, 1796, ‘Exposition du Système du Monde’, p. 387 (Courcier, Paris).Google Scholar
Lebofsky, L. A., 1975, Icarus, 25, 205.CrossRefGoogle Scholar
Lewis, J. S., and Prinn, R. G., 1980, Astrophys. J., 238, 357.Google Scholar
Lupo, M. J., 1982, Icarus, 52, 40.Google Scholar
Lupo, M. J.and Lewis, J. S., 1979, Icarus, 40, 157.Google Scholar
Lupo, M. J.and Lewis, J. S., 1980, Icarus, 42, 29.CrossRefGoogle Scholar
Podolak, M. and Reynolds, R. T., 1981, Icarus, 46, 40.Google Scholar
Prentice, A. J. R., 1973, Astron. Astrophys., 27, 237.Google Scholar
Prentice, A. J. R., 1974, in ‘In the Beginning … the Origin of Planets and Life’ (ed. Wild, J. P.), p. 15 (Aust. Acad. Sci., Canberra).Google Scholar
Prentice, A. J. R., 1977, Proc. Astron. Soc. Aust., 3, 172.Google Scholar
Prentice, A. J. R., 1978a, in ‘The Origin of the Solar System’ (ed. Dermott, S. F.), p. 111 (Wiley, London).Google Scholar
Prentice, A. J. R., 1978b, Moon and Planets, 19, 341.Google Scholar
Prentice, A. J. R., 1979, Proc. Astron. Soc. Aust., 3, 300.Google Scholar
Prentice, A. J. R., 1980a, Aust. J. Phys., 33, 623.Google Scholar
Prentice, A. J. R., 1980b, Phys. Lett., 80A, 205.Google Scholar
Prentice, A. J. R., 1981a, Proc. Astron. Soc. Aust., 4, 164.Google Scholar
Prentice, A. J. R., 1981b, JPL Publication 81-79, (Jet Propulsion Laboratory, Pasadena).Google Scholar
Prentice, A. J. R., 1983, Proc. Astron. Soc. Aust., 5, 183.CrossRefGoogle Scholar
Prentice, A. J. R., 1984, Earth, Moon and Planets, 30, 209.Google Scholar
Prentice, A. J. R., 1986, Phys. Lett., 114A, 211.Google Scholar
Prentice, A. J. R. and ter Haar, D., 1979a, Nature, 280, 300.Google Scholar
Prentice, A. J. R. and ter Haar, D., 1979b, Moon and Planets, 21, 43.Google Scholar
Robinson, R. D.and Collier Cameron, A., 1986, Proc. Astron. Soc. Aust., 6, 308.Google Scholar
Smith, B. A., and Voyager 2 Imaging Team, 1986, Science, 233, 43.Google Scholar
Stevenson, D. J., 1984, in ‘Uranus and NeptuneNASA Conf. Pubi. 2330 (ed.Bergstralth, J. T.), p. 405 NASA, Washington).Google Scholar
Stone, E. C.and Miner, E. D., 1986, Science, 233, 39.Google Scholar
Tyler, G. L.and Radio Science Team, 1982, Science, 215, 553.Google Scholar
Tyler, G. L.and Radio Science Team, 1986, Science, 233, 79.Google Scholar
Weidenschilling, S. J., 1977, Astrophys. Space Sci., 51, 153.Google Scholar