Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T15:19:12.306Z Has data issue: false hasContentIssue false

Securing the Faint End of the Galaxy Luminosity Function

Published online by Cambridge University Press:  05 March 2013

Helmut Jerjen*
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Weston ACT 2611, Australia
Brent Tully
Affiliation:
Institute for Astronomy, University of Hawaii, Honolulu HI 96822, USA
Neil Trentham
Affiliation:
Institute of Astronomy, Madingley Road, Cambridge CB03 0HA, UK
*
DCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The history of the formation of galaxies must leave an imprint in the properties of the mass function of collapsed objects and in its observational manifestation, the galaxy luminosity function. At present the faint end of the luminosity function is poorly known. Accurate knowledge of the luminosity function over the full range of galaxy clustering scales would provide serious constraints on both initial cosmological conditions and modulating astrophysical processes.

Wide field imaging surveys with large ground-based telescopes now provide the capability to identify dwarf galaxy candidates to very faint levels (μR ≈ 26 mag arcsec–2), too low in surface brightness for spectroscopy (measuring redshifts) even with telescopes like Keck. Other means have to be explored to get distance information for these candidates in order to separate cluster members from back/foreground systems beyond doubt. On the quest to establish the properties (slope and possible turning point) of the the faint end of the galaxy luminosity function we are employing the surface brightness fluctuation (SBF) method to determine adequate distances, potentially resulting in the best definition ever of the luminosity function to MR ≈ –11 in the cluster and group environments.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2004

References

Binggeli, B., Sandage, A., & Tammann, G. A. 1985, AJ, 90, 1681 Google Scholar
Binggeli, B., Sandage, A., & Tammann, G. A. 1988, ARA&A, 26, 509 Google Scholar
Binggeli, B., Tarenghi, M., & Sandage, A. 1990, A&A, 228, 42 Google Scholar
Blanton, M., Cen, R., Ostriker, J. P., & Strauss, M. A. 1999, ApJ, 522, 590 Google Scholar
Blanton, M., et al. 2003, ApJ, 592, 819 Google Scholar
Bode, P., Ostriker, J. P., & Turok, M. 2001, ApJ, 556, 93 CrossRefGoogle Scholar
Dekel, A., & Silk, J. 1986, ApJ, 303, 39 Google Scholar
Dressler, A. 1980, ApJ, 236, 351 CrossRefGoogle Scholar
Drinkwater, M., et al. 1999, ApJ, 511, L97 CrossRefGoogle Scholar
Drinkwater, M., et al. 2003, Natur, 423, 519 CrossRefGoogle Scholar
Ferguson, H. C. 1989, AJ, 98, 367 Google Scholar
Gnedin, N. Y. 2000, ApJ, 542, 535 Google Scholar
Haiman, Z., Thoul, A. A., & Loeb, A. 1996, ApJ, 464, 523 Google Scholar
Hilker, M., Mieske, S., & Infante, L. 2003, A&A, 397, L9 Google Scholar
Jerjen, H. 2003, A&A, 398, 63 Google Scholar
Jerjen, H., Binggeli, B., & Barazza, F. D. 2004, AJ, 127, 771 Google Scholar
Jerjen, H., Freeman, K. C., & Binggeli, B. 1998, AJ, 116, 2873 Google Scholar
Jerjen, H., Freeman, K. C., & Binggeli, B. 2000, AJ, 119, 166 Google Scholar
Jerjen, H., Tammann, G. A., & Binggeli, B. 1992, in Morphological and Physical Classification of Galaxies, eds. G. Longo et al. (Kluwer: Eindhoven), p. 17 Google Scholar
Jerjen, H., & Tammann, G. A. 1997, A&A, 321, 713 Google Scholar
Jerjen, H., et al. 2001, A&A, 380, 90 Google Scholar
Kambas, A., et al. 2000, AJ, 120, 1316 Google Scholar
Kraan-Korteweg, R. C. 1981, A&A, 104, 280 Google Scholar
Klypin, A., Kratsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82 Google Scholar
Moore, B., et al. 1999, ApJ, 524, L19 Google Scholar
Norberg, P., et al. 2002, MNRAS, 336, 907 Google Scholar
Ostriker, J. P., Nagamine, K., Cen, R., & Fukugita, F. 2003, ApJ, 597, 1 Google Scholar
Phillipps, S., Parker, Q. A., Schwartzenberg, J. M., & Jones, J. B. 1998, ApJ, 493, L59 Google Scholar
Schechter, P. 1976, ApJ, 203, 297 Google Scholar
Somerville, R. S., et al. 2001, MNRAS, 320, 289 Google Scholar
Spergel, D. N., & Steinhardt, P. J. 2000, PhRvL, 84, 3760 Google Scholar
Thompson, L. A., & Gregory, S. A. 1980, ApJ, 242, 1 Google Scholar
Thoul, A. A., & Weinberg, D. H. 1996, ApJ, 465, 608 CrossRefGoogle Scholar
Tonry, J., & Schneider, D. P. 1988, AJ, 96, 807 CrossRefGoogle Scholar
Tonry, J., et al. 2001, ApJ, 546, 681 Google Scholar
Trentham, N., & Hodgkins, S. 2002, MNRAS, 333, 423 Google Scholar
Trentham, N., & Tully, R. B. 2002, MNRAS, 335, 712 Google Scholar
Trentham, N., Tully, B. R., & Verheijen, M. A. W. 2001, MNRAS, 325, 385 Google Scholar
Tully, R. B. 2003 (astro-ph/0312441)Google Scholar
Tully, R. B., Somerville, R. S., Trentham, N., & Verheijen, M. A. W. 2002, ApJ, 569, 573 Google Scholar