Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T13:15:38.424Z Has data issue: false hasContentIssue false

Searching for Fast Radio Transients with SKA Phase 1

Published online by Cambridge University Press:  02 January 2013

T. M. Colegate*
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
N. Clarke
Affiliation:
International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
*
BCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Square Kilometre Array (SKA) provides an excellent opportunity for low-cost searches for fast radio transients. The increased sensitivity and field of view of the SKA compared with other radio telescopes will make it an ideal instrument to search for impulsive emission from high–energy density events. We present a high-level search ‘use case’ and propose event rate per unit cost as a figure of merit to compare transient survey strategies for radio telescope arrays; we use event rate per beam formed and searched as a first-order approximation of this measure. Key results are that incoherent (phase-insensitive) combination of antenna signals achieves the highest event rate per beam, and that 50–100 MHz processed bandwidth is sufficient for extragalactic searches with SKA Phase 1; the gain in event rate from using the full available bandwidth is small. Greater system flexibility will enable more effective searches, but need not drive the top-level system requirements beyond those already proposed for the SKA. The most appropriate search strategy depends on the observed sky direction and the source population; for SKA Phase 1, low-frequency aperture arrays tend to be more effective for extragalactic searches, and dishes more effective for directions of increased scatter broadening, such as near the Galactic plane.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Burke-Spolaor, S. & Bailes, M., 2010, MNRAS, 402, 855CrossRefGoogle Scholar
Chippendale, A. P., Colegate, T. M. & O'Sullivan, J. D., 2007, SKA Cost: A Tool for SKA Cost and Performance Estimation, SKA Memo 92Google Scholar
Clarke, N. L., D'Addario, L., Navarro, R., Cheng, T.-H. & Trinh, J., 2011, An Architecture for Incoherent Dedispersion, CRAFT Memo 6Google Scholar
Cordes, J. M., 2009, The SKA as a Radio Synoptic Survey Telescope: Widefield Surveys for Transients, Pulsars and ETI, 14th edn., SKA Memo 97Google Scholar
Cordes, J. M. & Lazio, T. J. W., 2002, arXiv:astro-ph/0207156Google Scholar
Cordes, J. M. & McLaughlin, M. A., 2003, ApJ, 596, 1142CrossRefGoogle Scholar
Cordes, J. M., Lazio, T. J. W. & McLaughlin, M. A., 2004, NewAR, 48, 1459CrossRefGoogle Scholar
Cordes, J. M. et al. , 2006, ApJ, 637, 446Google Scholar
D'Addario, L., 2010, ASKAP Surveys for Transients: Which Observing Mode is Best?, SKA Memo 123Google Scholar
Deneva, J. S. et al. , 2009, ApJ, 703, 2259Google Scholar
Dewdney, P. E., bij de Vaate, J.-G., Cloete, K., Gunst, A. W., Hall, D., McCool, R., Roddis, N. & Turner, W., 2010, SKA Phase 1: Preliminary System Description, SKA Memo 130Google Scholar
Faulkner, A. J., et al. , 2010, Aperture Arrays for the SKA: the SKADS White Paper, SKA Memo 122Google Scholar
Garrett, M. A., Cordes, J. M., Deboer, D. R., Jonas, J. L., Rawlings, S. & Schilizzi, R. T., 2010, A Concept Design for SKA Phase 1 (SKA1), SKA Memo 125Google Scholar
Graham, R. L., Lubachevsky, B. D., Nurmela, K. J. & Ostergard, P. R. J., 1998, Disc. Math., 181, 139Google Scholar
Hall, P. J., Schilizzi, R. T., Dewdney, P. E. & Lazio, T. J. W., 2008, The Radio Science Bulletin, 326Google Scholar
Hankins, T. H. & Rickett, B. J., 1975, in Methods in Computational Physics, ed. Alder, B., Fernbach, S., & Rotenberg, M., Vol. 14, 55129Google Scholar
Hessels, J. W. T., Stappers, B. W. & van Leeuwen, J., & Transients Key Science Project, 2009, in The Low-Frequency Radio Universe, ed. Saikia, D. J., Green, D., Gupta, Y., & Venturi, T.Google Scholar
Keane, E. F., Kramer, M., Lyne, A. G., Stappers, B. W., & McLaughlin, M. A., 2011, MNRAS, 415, 3065CrossRefGoogle Scholar
Keith, M. J. et al. , 2010, MNRAS, 409, 619Google Scholar
Kijak, J., Lewandowski, W., Maron, O., Gupta, Y. & Jessner, A., 2011, A&A, 531, A16Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F., 2007, Sci, 318, 777Google Scholar
Lorimer, D. R., Yates, J. A., Lyne, A. G. & Gould, D. M., 1995, MNRAS, 273, 411Google Scholar
Macquart, J.-P., Hall, P. J. & Clarke, N., 2010a, in ‘Inter national SKA Forum 2010 Science Meeting’ PoS(ISKAF2010)03, Assen, the NetherlandsGoogle Scholar
Macquart, J.-P. et al. , 2010b, PASA, 27, 272Google Scholar
Macquart, J.-P., 2011, ApJ, 734, 20Google Scholar
Malofeev, V. M., Gil, J. A., Jessner, A., Malov, I. F., Seiradakis, J. H., Sieber, W. & Wielebinski, R., 1994, A&A, 285, 201Google Scholar
Siemion, A., et al. 2011, in BAAS, Vol. 43, American Astronomical Society Meeting Abstracts #217, 240.06Google Scholar
Smits, R., Kramer, M., Stappers, B., Lorimer, D. R., Cordes, J. & Faulkner, A., 2009, A&A, 493, 1161Google Scholar
Stappers, B. W. et al. , 2011, A&A, 530, A80Google Scholar
van Leeuwen, J. & Stappers, B. W., 2010, A&A, 509, A7Google Scholar
Wayth, R. B., Brisken, W. F., Deller, A. T., Majid, W. A., Thompson, D. R., Tingay, S. J. & Wagstaff, K. L., 2011, ApJ, 735, 97CrossRefGoogle Scholar
Wilkinson, P. N., Kellermann, K. I., Ekers, R. D., Cordes, J. M. & Lazio, T. J. W., 2004, NewAR, 48, 1551Google Scholar
Zarb Adami, K., Faulkner, A., bij de Vaate, J. G., Kant, G. W. & Pickard, P., 2010, in Phased Array Systems and Technology (ARRAY), 2010 IEEE International Symposium on, 883890Google Scholar