Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T13:40:44.719Z Has data issue: false hasContentIssue false

The Radio-FIR Correlation in the Milky Way

Published online by Cambridge University Press:  02 January 2013

J. Zhang
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
A. Hopkins*
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
P. J. Barnes
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia Astronomy Department, University of Florida, Gainesville, FL 32611, USA
M. Cagnes
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
Y. Yonekura
Affiliation:
Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
Y. Fukui
Affiliation:
Department of Astrophysics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
*
FCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the scale on which the correlation arises between the 843 MHz radio and the 60 μm far-infrared (FIR) emission from star forming regions in the Milky way. The correlation, which exists on the smallest scales investigated (down to ≈ 4 pc), becomes noticeably tight on fields of size 30′, corresponding to physical scales of ≈ 20–50 pc. The FIR to radio flux ratio on this scale is consi stent with the radio emission being dominated by thermal emission. We also investigate the location dependence of qmean, a parameter measuring the mean FIR to radio flux ratio, of a sample of star forming regions. We show that qmean displays a modest dependence on galactic latitude. If this is interpreted as a dependence on the intensity of star formation activity, the result is consistent with studies of the Large Magellanic Cloud (LMC) and other near by galaxies that show elevated values for q in regions of enhanced star formation.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

References

Afonso, J., Hopkins, A., Mobasher, B. & Almeida, C., 2003, ApJ, 597, 269Google Scholar
Barnes, P. J. et al. , 2006, in IAU Symposium 231: “Astrochemistry Throughout the Universe”, Eds. Lis, D., Blake, G. A. & Herbst, E. (Cambridge UP: Cambridge)Google Scholar
Barnes, P. J., Yonekura, Y., Ryder, S. D., Hopkins, A. M., Miyamoto, Y., Furukawa, N. & Fukui, Y., 2010a, MNRAS, 402, 73Google Scholar
Barnes, P. J. et al. , 2010b (in preparation)Google Scholar
Bell, E., 2003, ApJ, 586, 794Google Scholar
Bicay, M. D. & Helou, G., 1990, ApJ, 362, 59Google Scholar
Bock, D., Large, M. I. & Sadler, E. M., 1999, AJ, 117, 1578Google Scholar
Boulanger, F. & Perault, M., 1988, ApJ, 330, 964Google Scholar
Broadbent, A., Osborne, J. L. & Haslam, C. G. T., 1989, MNRAS, 237, 381CrossRefGoogle Scholar
Calzetti, D., 1997, in “The Ultraviolet Universe at Low and High Redshift: Probing the Progress of Galaxy Evolution”, Eds. Waller, W. H. et al. (New York) AIP Conf. Proc. 408, 403Google Scholar
Calzetti, D., Bohlin, R. C., Kinney, A. L., Storchi-Bergmann, T. & Heckman, T. M., 1995, ApJ, 443, 136Google Scholar
Condon, J. J., 1992, ARA&A, 30, 575Google Scholar
Helou, G., Soifer, B. T. & Rowan-Robinson, M., 1985, ApJ, 298, L7Google Scholar
Hoernes, P., Berkhuijsen, E. M. & Xu, C., 1998, A&A, 334, 57Google Scholar
Hopkins, A. M., Connolly, A. J., Haarsma, D. B. & Cram, L. E., 2001, AJ, 122, 288Google Scholar
Hughes, A., Wong, T., Ekers, R., Staveley-Smith, L., Filipovic, M., Maddison, S., Fukui, Y. & Mizuno, N., 2006, MNRAS, 370, 363CrossRefGoogle Scholar
Kennicutt, R. C. Jr, 1998, ARAA, 36, 189Google Scholar
Marsh, K. A. & Helou, G., 1998, ApJ, 445, 599Google Scholar
Mauch, T., Murphy, T., Buttery, H. J., Curran, J., Hunstead, R. W., Piestrzynska, B., Robertson, J. G. & Sadler, E. M., 2003, MNRAS, 342, 1117Google Scholar
Murphy, E. J. et al. , 2006, ApJ, 651, L111Google Scholar
Pérez-González, P. G., Zamoranoy, J., Gallego, J., Aragón-Salamanca, A. & Gil de Paz, A., 2003, ApJ, 591, 827Google Scholar
Xu, C., Klein, U., Meinert, D., Wielebinski, R. & Haynes, R. F., 1992, A&A, 257, 47Google Scholar
Yonekura, Y. et al. , 2005, ApJ, 634, 476Google Scholar
Yun, M. S., Reddy, N. A. & Condon, J. J., 2001, ApJ, 554, 803Google Scholar