Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T21:52:17.371Z Has data issue: false hasContentIssue false

Radio Source Evolution and Unified Schemes

Published online by Cambridge University Press:  05 March 2013

C. A. Jackson*
Affiliation:
Department of Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Powerful extragalactic radio sources are characterised by kpc-scale synchrotron emission associated with highly-collimated outflows of relativistic plasma. It is hypothesised that this outflowing plasma is powered by accretion processes concomitant with a central massive black hole. The radio morphologies of these sources comprise jets, lobes and for the most powerful sources, hotspots. At first sight, powerful extragalactic radio sources are a mixed group of objects, with the result that only some gross property delineates them further (e.g. steep-spectrum or flat-spectrum). However, there is accumulating observational evidence which suggests that it is the orientation of the radio axis to our line of sight that dictates their observed characteristics. This orientation dependence has been incorporated into ‘unified schemes’, which physically link apparently disparate radio source types via the random orientation of a ‘parent’ population on the plane of the sky. This paper summarises the ‘dual-population unified scheme’ paradigm investigated by Wall & Jackson (1997) and Jackson & Wall (1999) and discusses some of its implications with respect to radio source cosmology.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1999

References

Antonucci, R., & Miller, J. 1985, ApJ, 297, 621 Google Scholar
Barthel, P. D. 1994, in The First Stromlo Symposium: The Physics of Active Galaxies, ASP Conf. Ser., Vol. 54, ed. G. V. Bicknell et al. (San Francisco: PASP), p. 175 Google Scholar
Baum, S. A., Zirbel, E. L., & O'Dea, C. P. 1995, ApJ, 451, 88 Google Scholar
Best, P. N., Bailer, D. M., Longair, M. S., & Riley, J. M. 1995, MNRAS, 275, 1171 Google Scholar
Best, P. N., Longair, M. S., & Rottgering, H. J. A. 1996, MNRAS, 286, 784 Google Scholar
Bicknell, G. V. 1996, ApJS, 101, 29 Google Scholar
Cress, C., Helfand, D. J., Becker, R. H., Gregg, M. D., & White, R. L. 1996, ApJ, 473, 17 Google Scholar
Dallacasa, D., Bondi, M., Della Ceca, R., & Stanghellini, C. 1997, Mem. Soc. Astr. Ital., 68, 55 Google Scholar
Davis, R. J., Unwin, S. C., & Muxlow, T. W. B. 1991, Nature, 321, 374 Google Scholar
Di Matteo, T., & Fabian, A. C. 1997, MNRAS, 286, 50P Google Scholar
Di Matteo, T., Fabian, A. C., Rees, M. J., Carilli, C. L., & Ivison, R. J. 1999, MNRAS, 305, 492 Google Scholar
Doroshkevich, A. G., Longair, M. S., & Zeldovich, Y. B. 1970, MNRAS, 147, 139 Google Scholar
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P Google Scholar
Fanti, C., & Fanti, R. 1990, in CSS and GPS Radio Sources, ed. C. Fanti et al. (Bologna: CNR — Istituto di Radioastronomia), p. 215 Google Scholar
Fanti, C., & Fanti, R. 1994, in The First Stromlo Symposium: The Physics of Active Galaxies, ASP Conf. Ser., Vol. 54, ed. G. V. Bicknell et al. (San Francisco: PASP), p. 341 Google Scholar
Hales, S. E. G., Baldwin, J. E., & Warner, P. J. 1988, MNRAS, 234, 919 Google Scholar
Hill, G., & Lilly, S. J. 1991, ApJ, 367, 1 Google Scholar
Hine, R. G., & Longair, M. S. 1979, MNRAS, 188, 111 Google Scholar
Jackson, C. A., & Wall, J. V. 1999, MNRAS, 304, 160 Google Scholar
Jackson, C. A. 1997, PhD thesis, University of Cambridge Google Scholar
Laing, R. A., Riley, J. M., & Longair, M. S. 1983, MNRAS, 204, 151 CrossRefGoogle Scholar
Laing, R. A., Wall, J. V., Jenkins, C. R., & Unger, S. W. 1994, in The First Stromlo Symposium: The Physics of Active Galaxies, ASP Conf. Ser., Vol. 54, ed. G. V. Bicknell et al. (San Francisco: PASP), p. 201 Google Scholar
Ledlow, M. J., & Owen, F. N. 1996, in Extragalactic Radio Sources, ed. R. Ekers et al. (Dordrecht: Kluwer), p. 238 Google Scholar
Lilly, S. J., & Prestage, R. M. 1987, MNRAS, 1225, 531 Google Scholar
Loan, A. J., Wall, J. V., & Lahav, O. 1997, MNRAS, 286, 349 Google Scholar
Longair, M. S. 1966, MNRAS, 133, 421 Google Scholar
Longair, M. S., & Seldner, M. 1979, MNRAS, 189, 433 Google Scholar
Magliocchetti, M., Maddox, S., Lahav, O., & Wall, J. V. 1998, MNRAS, 300, 257 CrossRefGoogle Scholar
O'Dea, C. P., Baum, S. A., & Stanghellini, C. S. 1991, ApJ, 380, 66 Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in Fortran (Cambridge Univ. Press)Google Scholar
Prestage, R. M., & Peacock, J. A. 1988, MNRAS, 230, 131P Google Scholar
Rees, M. J. 1967, MNRAS, 137, 429 Google Scholar
Reynolds, C. S., Di Matteo, T., Fabian, A. C., Hwang, U., & Canizares, C. R. 1996, MNRAS, 283, 111P Google Scholar
Scheuer, P. A. G. 1974, MNRAS, 166, 513 Google Scholar
Shaver, P. A., Wall, J. V., Kellermann, K. I., Jackson, C. A., & Hawkins, M. R. S. 1996, Nature, 384, 439 Google Scholar
Silk, J., & Rees, M. J. 1998, A&A, 331, 1 Google Scholar
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803 Google Scholar
Vermeulen, R. C. 1995, in Quasars and AGN: High Resolution Imaging, ed. M. H. Cohen & K. I. Kellermann (Washington, DC: !National Academy of Science), p. 11385 Google Scholar
Wall, J. V. 1998, in Observational Cosmology with the New Radio Surveys, ed. N. Jackson et al. (Dordrecht: Kluwer), p. 129 Google Scholar
Wall, J. V., & Jackson, C. A. 1997, MNRAS, 290, 17P Google Scholar
Yates, M. G., Miller, L., & Peacock, J. A. 1989, MNRAS, 240, 129 CrossRefGoogle Scholar
Zirbel, E. L. 1997, ApJ, 476, 489 CrossRefGoogle Scholar