Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T22:50:51.426Z Has data issue: false hasContentIssue false

Planetary Distance Law and Resonance

Published online by Cambridge University Press:  25 April 2016

J. J. Rawal*
Affiliation:
Nehru Planetarium, Nehru Centre, Bombay 400 018, India

Abstract

In this paper the relation between the planetary distance law and the resonant structures is shown, in that the resonance relation has been expressed in terms of Roche’s constant (Rawal 1984,1986,1989). This brings forth a coherent, elegant and unified picture of the Solar System and satellite systems.

Type
Solar & Solar System
Copyright
Copyright © Astronomical Society of Australia 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dermott, S. F., 1968a, Mon. Not. R. Astr. Soc., 141, 349.Google Scholar
Dermott, S. F., 1968b, Mon. Not. R. Astr. Soc., 141, 363.Google Scholar
Greenberg, R. J., 1973, Astron. J., 78, 338.Google Scholar
Goldreich, P., 1965a, Mon. Not. R. Astr. Soc., 130, 159.Google Scholar
Goldreich, P., 1965b, Astron. J., 70, 5.Google Scholar
Ovenden, M. W., Feagen, T. and Graf, O., 1974, Cel. Mech., 8, 455.Google Scholar
Prentice, A. J. R., 1978, Earth, Moon and Planets, 19, 341.CrossRefGoogle Scholar
Rawal, J. J., 1981, Earth, Moon and Planets, 24, 407.Google Scholar
Rawal, J. J., 1984, Earth, Moon and Planets, 31, 175.Google Scholar
Rawal, J. J., 1986, Earth, Moon and Planets, 34, 93.Google Scholar
Rawal, J. J., 1989, Earth, Moon and Planets, 44, 265.Google Scholar
Roy, A. E. and Ovenden, M. W., Mon. Not. R. Astr. Soc., 115, 295.Google Scholar