Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T13:31:04.543Z Has data issue: false hasContentIssue false

Paper Productivity of Ground-based Large Optical Telescopes from 2000 to 2009

Published online by Cambridge University Press:  02 January 2013

Sang Chul Kim
Affiliation:
Korea Astronomy and Space Science Institute, Daejeon, Republic of Korea Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an analysis of the scientific (refereed) paper productivity of the current largest (diameter > 8m) ground-based optical (and infrared) telescopes during the ten-year period from 2000 to 2009. The telescopes for which we have gathered and analysed the scientific publication data are the two 10-m Keck telescopes, the four 8.2-m Very Large Telescopes (VLT), the two 8.1-m Gemini telescopes, the 8.2-m Subaru telescope, and the 9.2-m Hobby–Eberly Telescope (HET). We have analysed the numbers of papers published in various astronomical journals produced by using these telescopes. While the total numbers of papers from these observatories are largest for the VLT, followed by Keck, Gemini, Subaru, and HET, the number of papers produced by each component of the telescopes is largest for Keck, followed by VLT, Subaru, Gemini, and HET. In 2009, each telescope of the Keck, VLT, Gemini, Subaru, and HET observatories produced 135, 109, 93, 107, and 5 refereed papers, respectively. We have shown that each telescope of the Keck, VLT, Gemini, and Subaru observatories is producing 2.1 ± 0.9 Nature and Science papers annually and these papers make up 1.7 ± 0.8% of all refereed papers produced by using each of those telescopes. Extending this relation, we propose that this ratio of the number of Nature and Science papers to the total number of refereed papers that will be produced by future extremely large telescopes (ELTs) will remain similar. From a comparison of the publication trends of the above telescopes, we suggest that (i) having more than one telescope of the same kind at the same location and (ii) increasing the number of instruments available at the telescope are good ways to maximize the paper productivity.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Abt, H. A. 1980, PASP, 92, 249CrossRefGoogle Scholar
Abt, H. A. 1995, ApJ, 455, 407CrossRefGoogle Scholar
Abt, H. A. 1998, PASP, 110, 210CrossRefGoogle Scholar
Abt, H. A. 2000, PASP, 112, 1417CrossRefGoogle Scholar
Abt, H. A. 2010, PASP, 122, 955CrossRefGoogle Scholar
Ahn, S.-H., Park, B.-G., Kim, Y.-S., Chun, M.-Y., Kim, H.-I., Sung, H.-I., Lee, D.-W., & Kim, S. C. 2008, PKAS, 23, 123 (Erratum: 2010, PKAS, 25, 51)Google Scholar
Apai, D., Lagerstrom, J., Reid, I. N., Levay, K. L., Fraser, E., Nota, A. & Henneken, E. 2010, PASP, 122, 808CrossRefGoogle Scholar
Barth, A. J., Sari, R., Cohen, M. H., Goodrich, R. W., Price, P. A., Fox, D. W., Bloom, J. S., Soderberg, A. M. & Kulkarni, S. R. 2003, ApJ, 584, L47CrossRefGoogle Scholar
Benn, C. R. & Sánchez, S. F. 2001, PASP, 113, 385CrossRefGoogle Scholar
Bracher, K. 1999, AJ, 117, 12CrossRefGoogle Scholar
Crabtree, D. 2008, SPIE, 7016, 70161AGoogle Scholar
Crabtree, D. 2011, AAS, 217, 15719Google Scholar
Cuby, J.-G., et al. 2007, A preparatory document to the 2007 CFHT Users' Meeting (http://www.cfht.hawaii.edu/UM2007/UM07_Prep.pdf)Google Scholar
Da Rocha, C., Mendes de Oliveira, C., Bolte, M., Ziegler, B. L. & Puzia, T. H. 2002, AJ, 123, 690CrossRefGoogle Scholar
Davoust, E. & Schmadel, L. D. 1987, PASP, 99, 700CrossRefGoogle Scholar
De Breuck, C. et al. , 2001, AJ, 121, 1241CrossRefGoogle Scholar
Dessauges-Zavadsky, M., Prochaska, J. X. & D'Odorico, S. 2002, A&A, 391, 801Google Scholar
Drory, N. et al. , 2002, ApJ, 562, L111CrossRefGoogle Scholar
Fischer, D. A. et al. , 2005, ApJ, 620, 481CrossRefGoogle Scholar
Frey, B. S. & Osterloh, M. 2010, Natur, 465, 871Google Scholar
Frogel, J. A. 2010, PASP, 122, 1241CrossRefGoogle Scholar
Grothkopf, U., Leibundgut, B., Macchetto, D., Madrid, J. P. & Leitherer, C. 2005, The Messenger, 119, 45Google Scholar
Höflich, P. et al. , 2004, ApJ, 617, 1258CrossRefGoogle Scholar
Hu, E. M. et al. , 2002, ApJ, 568, L75CrossRefGoogle Scholar
Leverington, D. 1996, QJRAS, 37, 643Google Scholar
Leverington, D. 1997a, Natur, 385, 196CrossRefGoogle Scholar
Leverington, D. 1997b, Natur, 387, 12CrossRefGoogle Scholar
Meylan, G., Madrid, J. P. & Macchetto, D. 2004, PASP, 116, 790CrossRefGoogle Scholar
Metcalfe, T. S. 2005, BAAS, 37, 555Google Scholar
Pettini, M. & Bowen, D. V. 2001, ApJ, 560, 41CrossRefGoogle Scholar
Ringwald, F. A., Culver, J. M., Lovell, R. L., Kays, S. A. & Torres, Y. V. 2003, BAAS, 35, 1063Google Scholar
Schaye, J., Rauch, M., Sargent, W. L. W. & Kim, T.-S. 2000, ApJ, 541, L1CrossRefGoogle Scholar
Schulman, E., French, J. C., Powell, A. L., Eichhorn, G., Kurtz, M. J. & Murray, S. S. 1997, PASP, 109, 1278CrossRefGoogle Scholar
Stanek, K. Z. 2008, (arXiv:0809.0692)Google Scholar
Trimble, V. 1995, PASP, 107, 977CrossRefGoogle Scholar
Trimble, V. 1996, Sciem, 36, 237Google Scholar
Trimble, V. 2009, ExA, 26, 133Google Scholar
Trimble, V., Zaich, P. & Bosler, T. 2005, PASP, 117, 111CrossRefGoogle Scholar
Trimble, V. & Ceja, J. A. 2007, AN, 328, 983Google Scholar
Trimble, V. & Ceja, J. A. 2008, AN, 329, 632Google Scholar
Veillet, C. 2011, private communicationGoogle Scholar
Venn, K. A. et al. , 2001, ApJ, 547, 765CrossRefGoogle Scholar
Vreeswijk, P. M. et al. , 2004, A&A, 419, 927Google Scholar
White, S. D. M. 2007, RPPh, 70, 883Google Scholar
Zheng, W. et al. , 2000, AJ, 120, 1607CrossRefGoogle Scholar