Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T02:31:44.092Z Has data issue: false hasContentIssue false

Nucleosynthesis of Light-Element Isotopes in Evolved Stars Experiencing Extended Mixing

Published online by Cambridge University Press:  05 March 2013

S. Palmerini*
Affiliation:
Dipartimento di Fisica, Università degli Studi di Perugia, via Pascoli, 06123 Perugia, Italy INFN Sezione di Perugia, via Pascoli, 06123 Perugia, Italy
M. Busso
Affiliation:
Dipartimento di Fisica, Università degli Studi di Perugia, via Pascoli, 06123 Perugia, Italy INFN Sezione di Perugia, via Pascoli, 06123 Perugia, Italy
E. Maiorca
Affiliation:
Dipartimento di Fisica, Università degli Studi di Perugia, via Pascoli, 06123 Perugia, Italy INFN Sezione di Perugia, via Pascoli, 06123 Perugia, Italy
R. Guandalini
Affiliation:
Dipartimento di Fisica, Università degli Studi di Perugia, via Pascoli, 06123 Perugia, Italy INFN Sezione di Perugia, via Pascoli, 06123 Perugia, Italy
*
CCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present computations of nucleosynthesis in red giants and Asymptotic Giant Branch (AGB) stars of Population I experiencing extended mixing. The assumed physical cause for mass transport is the buoyancy of magnetized structures, according to recent suggestions. The peculiar property of such a mechanism is to allow for both fast and slow mixing phenomena, as required for reproducing the spread in Li abundances displayed by red giants and as discussed in an accompanying paper. We explore here the effects of this kind of mass transport on CNO and intermediate-mass nuclei and compare the results with the available evidence from evolved red giants and from the isotopic composition of presolar grains of AGB origin. It is found that a good general accord exists between predictions and measurements; in this framework we also show which type of observational data best constrains the various parameters. We conclude that magnetic buoyancy, allowing for mixing at rather different speeds, can be an interesting scenario to explore for explaining together the abundances of CNO nuclei and of Li.

Type
Theory, Evolution and Models
Copyright
Copyright © Astronomical Society of Australia 2009

References

Amari, S., Zinner, E. & Lewis, R. S. 2000, M&PS, 35, 997 Google Scholar
Andrews, A. D. et al., 1988, A&A, 204, 177 Google Scholar
Angulo, C. et al., 1999, NuPhA, 656, 3 Google Scholar
Boothroyd, A. I., Sackmann, I.-J. & Wasserburg, G. J. 1995, ApJ, 442, L21 CrossRefGoogle Scholar
Briand, C. & Solanki, R. K., A&A, 330, 1160 Google Scholar
Busso, M., Gallino, R. & Wasserburg, G. J. 1999, ARA&A 37, 239 Google Scholar
Busso, M., Gallino, R., Lambert, D. L., Travaglio, C. & Smith, C. C., 2001, ApJ, 557, 802 Google Scholar
Busso, M., Wasserburg, G. J., Nollett, K. M. & Calandra, A. 2007, ApJ, 671, 802 Google Scholar
Cameron, A. G. W. & Fowler, W. A. 1971, ApJ, 164, 111 Google Scholar
Charbonnel, C. 1994, A&A, 282, 811 Google Scholar
Charbonnel, C. & Do Nascimento, J. D. Jr, 1998, A&A, 336, 915 Google Scholar
Charbonnel, C. & Balachandran, S. C. 2000, A&A, 359, 563 Google Scholar
Charbonnel, C. & Zahn, J.-P., 2007, A&A, 467, L15 Google Scholar
Chin, Y.-N., Henkel, C., Langer, N. & Mauersberger, R. 1999, ApJ, 512, L143 Google Scholar
Choi, B.-G., Huss, G. R.,Wasserburg, G. J. & Gallino, R. 1998, Sci, 282, 1284 Google Scholar
Denissenkov, P. A., Pinsonneault, M. & MacGregor, K. B. 2009, ApJ, in pressGoogle Scholar
Eggleton, P. P., Dearborn, D. S. P. & Lattanzio, J. C. 2006, Sci, 314, 1580 CrossRefGoogle Scholar
Gallino, R., Arlandini, C., Busso, M., Lugaro, M., Travaglio, C., Straniero, O., Chieffi, A. & Limongi, M. 1998, ApJ, 497, 388 Google Scholar
Gilroy, K. K. 1989, ApJ, 347, 835 Google Scholar
Gilroy, K. K. & Brown, J. A. 1991, ApJ, 371, 578 Google Scholar
Guandalini, R., Palmerini, S., Busso, M. & Uttenthaler, S. 2009, PASA, this volumeGoogle Scholar
Harris, M. J., Lambert, D. L. & Smith, V. V. 1988, ApJ, 325, 768 Google Scholar
Käppeler, F., Beer, H. & Wisshak, F. 1989, RPrPh, 52, 945 Google Scholar
Lambert, D. L., Gustafsson, B., Eriksson, K. & Hinkle, K. H. 1986, ApJS, 62, 373 Google Scholar
Li, L. H., Sofia, S. & Belvedere, G. 2005, ApJ, 629, 1164 Google Scholar
Meléndez, J. L. & Ramirez, I. 2007, ApJ, 669, L89 CrossRefGoogle Scholar
Nittler, L. R., Alexander, C. M. O'D., Gao, X., Walker, R. M. & Zinner, E. 1997, NuPhA, 621, 113 Google Scholar
Nollett, K. M., Busso, M. & Wasserburg, G. J. 2003, ApJ, 582, 1036 CrossRefGoogle Scholar
Nordhaus, J., Busso, M., Wasserburg, G. J., Blackman, E. G. & Palmerini, S. 2008, ApJ, 684, L29 CrossRefGoogle Scholar
Palacios, A., Charbonnel, C., Talon, S. & Siess, L. 2006, A&A, 453, 261 Google Scholar
Palmerini, S. & Busso, M. 2008, NewAR, 52, 412 CrossRefGoogle Scholar
Sackmann, I.-J. & Boothroyd, A. I. 1999, ApJ, 510, 217 CrossRefGoogle Scholar
Shimizu, T. et al., 2008, ApJ, 680, 1467 CrossRefGoogle Scholar
Smith, V. V. & Lambert, D. L. 1990, ApJS, 72, 387 Google Scholar
Straniero, O., Chieffi, A., Limongi, M., Busso, M., Gallino, R. & Arlandini, C. 1997, ApJ, 478, 332 Google Scholar
Straniero, O., Domínguez, I., Cristallo, S. & Gallino, R. 2003, PASA, 20, 389 CrossRefGoogle Scholar
Straniero, O., Gallino, R. & Cristallo, S. 2006, NuPhA, 777, 311 Google Scholar
Švanda, M., Klavňa, M. & Sobotka, M. 2006, A&A, 458, 301 Google Scholar
Švanda, M. et al., 2009, NewA, 14, 429 Google Scholar
Wallerstein, G. & Morell, O. 1994, A&A, 281, L37 Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R. & Nollett, K. M. 2006, NuPhA, 777, 5 Google Scholar
Wasserburg, G. J., Boothroyd, A. I. & Sackmann, I.-J., 1995, ApJ, 447, L37 Google Scholar
Zinner, E. et al., 2007, GeCoA, 71, 4786 Google Scholar