Hostname: page-component-599cfd5f84-z6fpd Total loading time: 0 Render date: 2025-01-07T07:44:27.419Z Has data issue: false hasContentIssue false

A New Installation for Studying the Sidereal Anisotropy of Cosmic Rays

Published online by Cambridge University Press:  25 April 2016

A. G. Fenton
Affiliation:
Physics Department, University of Tasmania
K. B Fenton
Affiliation:
Physics Department, University of Tasmania
J. E. Humble
Affiliation:
Physics Department, University of Tasmania
R. M. Jacklyn
Affiliation:
Antarctic Division, Hobart
A. Vrana
Affiliation:
Antarctic Division, Hobart
K. Murakami
Affiliation:
Nagoya University, Japan
Z. Fijii
Affiliation:
Nagoya University, Japan
T. Yamada
Affiliation:
Nagoya University, Japan
S. Sakakibara
Affiliation:
Nagoya University, Japan
K. Fujimoto
Affiliation:
Nagoya University, Japan
H. Ueno
Affiliation:
Nagoya University, Japan
N. Nagashima
Affiliation:
Nagoya University, Japan
I. Kondo
Affiliation:
University of Tokyo, Japan

Extract

It is now firmly established that a small anisotropy of the galactic cosmic rays exists, observable from Earth as a variation of intensity in sidereal time. The problem now is to determine more clearly the characteristics of the anisotropy and, in particular, its detailed spatial structure and how it depends upon the energy and composition of the cosmic rays. This is a very difficult task and, in the final analysis, may not be fully achievable from Earth-based observations. The purpose of the present paper is to describe briefly an installation now operating in Tasmania to provide further information on the spatial structure of the anisotropy.

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeenko, W. W., Chudakov, A. E., Gulieva, E. N. and Sborshikov, V. G., 17th Int. Cosmic Ray Conf., Paris 2, 146, (1981).Google Scholar
Bercovitch, M., and Agrawal, S. P., 17th Int. Cosmic Ray Conf., Paris, 10, 246, (1981).Google Scholar
Bergeson, H. E., Cutler, D. J., Davis, J. F., and Groom, D. E., Pro. 16th Int. Cosmic Ray Conf., Kyoto, 4, 188 (1979).Google Scholar
Fenton, A. G., and Fenton, K. B., Proc. 14th Int. Cosmic Ray Conf., Munich, 4, 1482 (1975).Google Scholar
Fenton, A. G., Fenton, K. B., Humble, J. E., Jacklyn, R. M., Vrana, A., Murakami, K., Fujii, Z., Yamada, T., Sakakibara, S., Fujimoto, K., Ueno, H., Nagashima, K., and Kondo, I., Proc. 17th Int. Cosmic Ray Conf., Paris, 4, 185 (1981).Google Scholar
Fenton, K. B., Proc. 14th Int. Cosmic Ray Conf., Munich, 11, 3907 (1975).Google Scholar
Gombosi, T., Kota, T., Somogyi, A. J., Varga, A., Betev, B., Katsarski, L., Kavlakov, S., and Khirov, I., Proc. 14th Int. Cosmic Ray Conf., Munich, 2, 586 (1975).Google Scholar
Hillas, A. M., 17th Int. Cosmic Ray Conf., Paris, 13, 69 (1981).Google Scholar
Jacklyn, R. M., ANARE Scientific Reports (C), 2, Pub. No. 114 (1970).Google Scholar
Nagashima, K., and Mori, S., Proc. Int. Cosmic Ray Symposium on High Energy Modulation, Tokyo (1976).Google Scholar
Nagashima, K., Ueno, H., Fujimoto, K., Fujii, Z., Sakakibara, S., and Kondo, I., Proc. 14th Int. Cosmic Ray Conf., Munich, 4, 1503 (1975).Google Scholar
Parker, E. N., Proc. 12th Int. Cosmic Ray Conf., Hobart, Invited and Rapporteur Papers, 95 (1971).Google Scholar
Sakakibara, S., Ueno, H., Fujimoto, K., Fujii, Z., Kondo, I., and Nagashima, K., Proc. 16th Int. Cosmic Ray Conf, Kyoto, 4, 216 (1979).Google Scholar
Stephens, S. A., Proc. 17th Int. Cosmic Ray Conf., Paris, 13, 89 (1981).Google Scholar
Wolfendale, A. W., Cosmic Rays, George Newnes (1963).Google Scholar