Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T07:34:52.222Z Has data issue: false hasContentIssue false

New Attempts to Understand Nanodiamond Stardust

Published online by Cambridge University Press:  02 January 2013

U. Ott*
Affiliation:
Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany University of Western Hungary, Savaria Campus, Károlyi Gáspár tér 4, H-9700 Szombathely, Hungary
A. Besmehn
Affiliation:
Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
K. Farouqi
Affiliation:
Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
O. Hallmann
Affiliation:
Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
P. Hoppe
Affiliation:
Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
K.-L. Kratz
Affiliation:
Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
K. Melber
Affiliation:
University of Vienna, Faculty of Physics, VERA Laboratory, Währinger Strasse 17, A-1090 Vienna, Austria
A. Wallner
Affiliation:
University of Vienna, Faculty of Physics, VERA Laboratory, Währinger Strasse 17, A-1090 Vienna, Austria Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia
*
FCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on a concerted effort aimed at understanding the origin and history of the pre-solar nanodiamonds in meteorites including the astrophysical sources of the observed isotopic abundance signatures. This includes measurement of light elements by secondary ion mass spectrometry (SIMS), analysis of additional heavy trace elements by accelerator mass spectrometry (AMS) and dynamic calculations of r-process nucleosynthesis with updated nuclear properties. Results obtained indicate that: (i) there is no evidence for the former presence of now-extinct 26Al and 44Ti in our diamond samples other than what can be attributed to silicon carbide and other ‘impurities’, and this does not offer support for a supernova (SN) origin but neither does it negate it; (ii) analysis by AMS of platinum in ‘bulk diamond’ yields an overabundance of r-only 198Pt that at face value seems more consistent with the neutron burst than with the separation model for the origin of heavy trace elements in the diamonds, although this conclusion is not firm given analytical uncertainties; (iii) if the Xe–H pattern was established by an unadulterated r-process, it must have been a strong variant of the main r-process, which possibly could also account for the new observations in platinum.

Type
Research Front: Astronomy with Radioactivities
Copyright
Copyright © Astronomical Society of Australia 2012

References

Aboussir, Y., Perason, J. M., Dutta, A. K. & Tondeur, F., 1995, ADNDT, 61, 127CrossRefGoogle Scholar
Amari, S., Hoppe, P., Zinner, E. & Lewis, R. S., 1992, ApJL, 394, L43CrossRefGoogle Scholar
Amari, S., Lewis, R. S. & Anders, E., 1994, GeCoA, 58, 459Google Scholar
Arlandini, C., Gallino, R., Lugaro, M., Busso, M. & Straniero, O., 1999, ApJ, 525, 886Google Scholar
Arndt, O., et al. , 2009, AcPP, B40, 2009, 437Google Scholar
Arndt, O., et al. , 2011, PhRvC, 84, 061307Google Scholar
Berg, T., Maul, J., Schönhense, G., Marosits, E., Hoppe, P., Ott, U. & Palme, H., 2009, ApJ, 702, L172Google Scholar
Besmehn, A. & Hoppe, P., 2003, GeCoA, 67, 4693CrossRefGoogle Scholar
Besmehn, A., Hoppe, P. & Ott, U., 2011, M&PS, 46, 1265Google Scholar
Braatz, A., Ott, U., Henning, T., Jäger, C. & Jeschke, G., 2000, M&PS, 35, 75Google Scholar
Carlson, R. W., Boyet, M. & Horan, M., 2007, Sci, 316, 1175Google Scholar
Clayton, D. D., 1989, ApJ, 340, 613CrossRefGoogle Scholar
Clayton, D. D. & Nittler, L. R., 2004, ARA&A, 42, 39Google Scholar
Daulton, T. L., Eisenhour, D. D., Bernatowicz, T. J., Lewis, R. S. & Buseck, P. R., 1996, GeCoA, 60, 4853CrossRefGoogle Scholar
Dillmann, I., et al. , 2003, PhRvL, 91, 162503Google Scholar
Farouqi, K., Kratz, K.-L., Mashonkina, L. I., Pfeiffer, B., Cowan, J. J., Thielemann, F.-K. & Truran, J. W., 2009, ApJL, 694, L49CrossRefGoogle Scholar
Farouqi, K., Kratz, K.-L., Pfeiffer, B., Rauscher, T., Thielemann, F.-K. & Truran, J. W., 2010, ApJ, 712, 1359CrossRefGoogle Scholar
Freiburghaus, C., Rembges, J.-F., Rauscher, T., Kolbe, E., Thielemann, F.-K., Kratz, K.-L., Pfeiffer, B. & Cowan, J. J., 1999, ApJ, 516, 381CrossRefGoogle Scholar
Goriely, S., Bauswein, A. & Janka, H.-T., 2011, ApJL, 738, L32CrossRefGoogle Scholar
Heck, P. R., et al. , 2011, M&PS, 46, A90Google Scholar
Hidaka, H. & Yoneda, S., 2011, GeCoA, 75, 3687Google Scholar
Hohenberg, C. M., Thonnard, N. & Meshik, A., 2002, M&PS, 37, 257Google Scholar
Hoppe, P., 2008, SSRv, 138, 43Google Scholar
Hoppe, P., Amari, S., Zinner, E., Ireland, T. & Lewis, R. S., 1994, ApJ, 430, 870CrossRefGoogle Scholar
Huss, G. R. & Lewis, R. S., 1994, Metic, 29, 791Google Scholar
Huss, G. R. & Lewis, R. S., 1995, GeCoA, 59, 115CrossRefGoogle Scholar
Huss, G. R., Ott, U. & Koscheev, A. P., 2008, M&PS, 43, 1811Google Scholar
Koscheev, A. P., Gromov, M. D., Mohapatra, R. K. & Ott, U., 2001, Natur, 412, 615CrossRefGoogle Scholar
Kratz, K.-L., Pfeiffer, B., Arndt, O., Hennrich, S. & Wöhr, A., 2005, the ISOLDE/IS333, IS378 & IS393 Collaborations, EPJA, 25, s01, 633Google Scholar
Kratz, K.-L., Farouqi, K., Mashonkina, L. I. & Pfeiffer, B., 2008, NewAR, 52, 390CrossRefGoogle Scholar
Kutschera, W., et al. , 1997, NIMPB, 123, 47Google Scholar
Lewis, R. S., Srinivsan, B. & Anders, E., 1975, Sci, 190, 914CrossRefGoogle Scholar
Lewis, R. S., Anders, E. & Draine, B. T., 1989, Natur, 339, 117Google Scholar
Lewis, R. S., Huss, G. R., Anders, E., Liu, Y.-G. & Schmitt, R. A., 1991, Metic, 26, 363Google Scholar
Lodders, K. & Amari, S., 2005, ChEG, 65, 93Google Scholar
Marhas, K. K., Hoppe, P. & Ott, U., 2007, M&PS, 42, 1077Google Scholar
Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G. & Burnett, D. S., 2011, Sci, 332, 1533CrossRefGoogle Scholar
Melber, K., 2011, PhD Thesis, University of ViennaGoogle Scholar
Merchel, S., et al. , 2003, GeCoA, 67, 4949CrossRefGoogle Scholar
Möller, P., Nix, J. R., Myers, W. D. & Swiatecki, W. J., 1995, ADNDT, 59, 185Google Scholar
Nichols, R. H. Jr, Nuth, J. A. III, Hohenberg, C.M., Olinger, C. T. & Moore, M. H., 1992, Metic, 27, 555Google Scholar
Nittler, L. R., Alexander, C. M. O'D., Gao, X., Walker, R. M. & Zinner, E., 1997, ApJ, 483, 475Google Scholar
Nittler, L. R., Alexander, C. M. O'D., Gallino, R., Hoppe, P., Nguyen, A. N., Stadermann, F. J. & Zinner, E. K., 2008, ApJ, 682, 1450Google Scholar
Nittler, L. R., et al. , 1995, ApJL, 453, L25Google Scholar
Nittler, L. R., Amari, S., Zinner, E., Woosley, S. E. & Lewis, R. S., 1996, ApJL, 462, L31Google Scholar
Ott, U., 1996, ApJ, 463, 344Google Scholar
Ott, U., 2002, in Noble Gases and Cosmochemistry, ed. Porcelli, D., Ballentine, C. J. & Wieler, R., Rev. Mineralogy and Geochemistry (Washington D.C.: Mineralogical Society of America), 47, 71Google Scholar
Ott, U. & Kratz, K.-L., 2008, NewAR, 52, 396Google Scholar
Ott, U., Kratz, K.-L. & Farouqi, K., 2009, M&PS, 44, A162Google Scholar
Ott, U., Merchel, S., Melber, K. & Wallner, A., 2010, M&PS, 45, A159Google Scholar
Pearson, J. M., Nayak, R. C. & Goriely, S., 1996, PhLB, 387, 455Google Scholar
Pepin, R. O., Becker, R. H. & Rider, P. E., 1995, GeCoA, 59, 4997Google Scholar
Priller, A., Melber, K., Forstner, O., Golser, R., Kutschera, W., Steier, P. & Wallner, A., 2010, NIMPB, 268, 824Google Scholar
Rauscher, T., Heger, A., Hoffman, R. D. & Woosley, S. E., 2002, ApJ, 576, 323 (detailed numerical data at: www.nucleosynthesis.org)Google Scholar
Schönbächler, M., Lee, D.-C., Rehkämper, M., Halliday, A. N., Fehr, M. A., Hattendorf, B. & Günther, D., 2003, E&PSL, 216, 467Google Scholar
Steier, P., Golser, R., Liechtenstein, V., Kutschera, W., Priller, A., Vockenhuber, C. & Wallner, A., 2005, NIMPB, 240, 445Google Scholar
Stroud, R. M., Chisholm, M. F., Heck, P.R., Alexander, C.M. O'D. & Nittler, L. R., 2011, ApJL, 738, L27CrossRefGoogle Scholar
Verchovsky, A. B., Wright, I. P. & Pillinger, C. T., 2003, PASA, 20, 329Google Scholar
Wallner, A., 2010, NIMPB, 268, 1277Google Scholar
Wallner, A., et al. , 2011, NIMPB, submittedGoogle Scholar
Woosley, S. E., Arnett, W. D. & Clayton, D. D., 1973, ApJS, 26, 231CrossRefGoogle Scholar
Yin, Q.-Z., Lee, C.-T. A. & Ott, U., 2006, ApJ, 647, 676CrossRefGoogle Scholar
Zinner, E., 2007, in Treatise on Geochemistry Update, ed. Holland, H. D., Turekian, K. K. & Davis, A. (Oxford: Elsevier Ltd.), 1.02 (online update only), 1Google Scholar