Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T04:20:29.315Z Has data issue: false hasContentIssue false

Neptune’s Triton: A Moon Rich in Dry Ice and Carbon?

Published online by Cambridge University Press:  25 April 2016

A. J. R. Prentice*
Affiliation:
Department of Mathematics, Monash University, Clayton, Victoria 3168

Abstract

The encounter of the spacecraft Voyager 2 with Neptune and its large satellite Triton in August 1989 will provide a crucial test of ideas regarding the origin and chemical composition of the outer solar system. In this pre-encounter paper we quantify the possibility that Triton is a captured moon which, like Pluto and Charon, originally condensed as a major planetesimal within the gas ring that was shed by the contracting protosolar cloud at Neptune’s orbit. Ideas of supersonic convective turbulence are used to compute the gas pressure, temperature and rate of catalytic synthesis of CH4, CO2 and solid carbon within the protosolar cloud, assuming that all C is initially present as CO. The calculations lead to a unique composition for Triton, Pluto, and Charon: each body consists of, by mass, 18.5% solid CO2 ice, 4% graphite, 0.5% CH4 ice, 29% methanated water ice and 48% anhydrous rock. This mix has a density consistent with that of the Pluto-Charon system and yields a predicted mean density for Triton of 2.20±0.05 g cm−3, for satellite radius equal to 1750 km.

Type
Solar & Solar System
Copyright
Copyright © Astronomical Society of Australia 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. and Ebihara, M., 1982, Geochim. Cosmochim. Acta, 46, 2363.CrossRefGoogle Scholar
Anderson, J. D., Campbell, J. K., Jacobson, R. A., Sweetnam, D. N., Taylor, A. H. and Prentice, A. J. R., 1987, J. Geophys. Res., 92, 14877.Google Scholar
Bridgman, P. W., 1914, Phys. Rev. (2nd Ser.), 3, 153.Google Scholar
Cruikshank, D. P. and Silvaggio, P. M., 1980, Icarus, 41, 96.Google Scholar
Cruikshank, D. P., Brown, R. H. and Clark, R. N.. 1984, Icarus, 58, 293.Google Scholar
Ellsworth, K. and Schubert, G., 1983, Icarus, 54, 490.Google Scholar
Hubbard, W. B. and MacFarlane, J. J., 1980, J. Geophys. Res., 85, 225.Google Scholar
Hubbard, W.B., MacFarlane, J. J., Anderson, J. D., Null, G. W. and Biller, E. D., 1980, J. Geophys. Res., 85, 5909.Google Scholar
Lebofsky, L. A., Rieke, G. H. and Lebofsky, M. J., 1982, Bull. Amer. Astron. Soc., 14, 766.Google Scholar
Lewis, J. S., Barshay, S. S. and Noyes, B., 1979, Icarus, 37, 190.Google Scholar
Lewis, J. S. and Prinn, R. G., 1980, Astrophys. J., 238, 357.Google Scholar
Lunine, J. I. and Stevenson, D. J., 1985, Astrophys. J. Suppl. Ser., 58, 493.Google Scholar
Lupo, M. J. and Lewis, J. S., 1980, Icarus, 42, 29.Google Scholar
McKinnon, W. B., 1984, Nature, 311, 355.Google Scholar
McKinnon, W. B. and Mueller, S., 1988, Nature, 335, 240.Google Scholar
Manzhelii, V. G., Tolkachev, A. M., Bagatskii, M. I. and Voitovich, E.I., 1971, Phys. Status. Sol. (b), 44, 39.Google Scholar
Moore, W. J., 1972, Physical Chemistry, 5th Edn. (London: Longman), p. 369.Google Scholar
Norris, R. P., 1980, Earth Planet. Sci. Letts., 47, 43.Google Scholar
Null, G. W., 1976, Astron. J., 81, 1153.Google Scholar
Pollack, J.B., Burns, J. A. and Tauber, M. E., 1979, Icarus, 37, 587.Google Scholar
Prentice, A. J. R., 1973, Astron. Astrophys., 27, 237.Google Scholar
Prentice, A. J. R., 1977, Proc. Astron. Soc. Aust., 3, 172.Google Scholar
Prentice, A. J.R. 1978 a, in The Origin of the Solar System, ed. Dermott, S.F. (London: Wiley), p. 111.Google Scholar
Prentice, A. J. R., 1978 b, Moon Planets, 19, 341.Google Scholar
Prentice, A. J. R., 1986, Proc. Astron. Soc. Aust., 6, 394.Google Scholar
Prentice, A. J. R. and ter Haar, D., 1979 a, Nature, 280, 300.Google Scholar
Prentice, A. J. R. and ter Haar, D., 1979 b, Moon Planets, 21, 43.Google Scholar
Prentice, A. J. R., 1989, Physics Letters A, 140, 265.Google Scholar
Prinn, R. G. and Fegley, B., 1981, Astrophys. J., 249, 308.CrossRefGoogle Scholar
Prinn, R. G. and Fegley, B., 1989, in Origin and Evolution of Planetary and Satellite Atmospheres, eds. Atreya, S. K., Pollack, J. B. and Matthews, M.S. (Tucson: Univ. of Arizona Press), p. 78.Google Scholar
Stevenson, D. J., 1984, in Uranus and Neptune, ed. Bergstralh, J. T. (Washington: NASA), p. 405.Google Scholar
Stone, E.C. and Miner, E. D., 1989, Science, 246, 1417.Google Scholar
Temkin, M. and Pyzhev, V., 1940, Acta Physicochim. U.R.S.S., 12, 327.Google Scholar
Tholen, D. J. and Buie, M. W., 1988, Astron. J., 96, 1977.Google Scholar
Trafton, L., Stern, S. A. and Gladstone, G. R., 1988, Icarus, 74, 108.Google Scholar
Urey, H.C. and Mayeda, T., 1959, Geochim. Cosmochim. Acta, 17, 113.Google Scholar
Vannice, M. A., 1975, J. Catalysis, 37, 449.Google Scholar