Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T02:35:17.196Z Has data issue: false hasContentIssue false

Monoenergetic Neutrons for Stellar Applications

Published online by Cambridge University Press:  05 March 2013

M. Mosconi*
Affiliation:
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
M. Heil
Affiliation:
Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Gesellschaft für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
F. Käppeler
Affiliation:
Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
R. Plag
Affiliation:
Forschungszentrum Karlsruhe, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany Gesellschaft für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
A. Mengoni
Affiliation:
International Atomic Energy Agency, Wagramer Strasse 5, 1400 Vienna, Austria
R. Nolte
Affiliation:
Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
*
ECorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With modern techniques, neutron-capture cross sections can be determined with uncertainties of a few percent. However, Maxwellian averaged cross sections calculated from such data require a correction (because low-lying excited states are thermally populated in the hot stellar photon bath) which has to be determined by theoretical calculations. These calculations can be improved with information from indirect measurements, in particular by the inelastic scattering cross section. For low-lying levels, the inelastically scattered neutrons are difficult to separate from the dominant elastic channel. This problem is best solved by means of pulsed, monoenergetic neutron beams. For this reason, a pulsed beam of 30 keV neutrons with an energy spread of 7 to 9 keV FWHM and a width from 10 to 15 ns has been produced at Forschungszentrum Karlsruhe using the 7Li(p, n)7Be reaction directly at the reaction threshold. With this neutron beam the inelastic scattering cross section of the first excited level at 9.75 keV in 187Os was determined with a relative uncertainty of 6%. The use of monoenergetic neutron beams has been further pursued at the Physikalisch-Technische Bundesanstalt in Braunschweig, including the 3H(p, n)3He reaction for producing neutrons with an energy of 64 keV.

Type
s-Process and n Capture
Copyright
Copyright © Astronomical Society of Australia 2009

References

Aliberti, G. et al., 2006, AnNE, 33, 700 Google Scholar
Argast, D., Samland, M., Thielemann, F. K. & Qian, Y. Z., 2004, A&A, 416, 997 Google Scholar
Bao, Z.Y., Beer, H., Käppeler, F., Voss, F., Wisshak, K. & Rauscher, T., 2000, ADNDT, 76, 70 CrossRefGoogle Scholar
Bokhovko, M., Kononov, V., Poletaev, E., Rabotnov, N. & Timokhov, V., 1992, in Nuclear Data for Science and Technology, Ed. Qaim, S. (Berlin: Springer), 62 Google Scholar
Bosch, F. et al., 1996, PhRvL, 77, 5190 Google Scholar
Browne, J. C. & Berman, B. L., 1981, PhRvC, 23, 1434 Google Scholar
Burbidge, E. M., Burbidge, G. M., Fowler, W.A. & Hoyle, F., 1957, RvMP, 29, 547 Google Scholar
Busso, M., Gallino, R. & Wasserburg, G., 1999, ARA&A, 37, 239 Google Scholar
Clayton, D. D., 1964, ApJ, 139, 637 Google Scholar
Dillmann, I., 2008, AIPC, 1016, 143 Google Scholar
Hershberger, R., Macklin, R., Balakrishnan, M., Hill, N. & McEllistrem, M., 1983, PhRvC, 28, 2249 Google Scholar
Iliadis, C., 2007, Nuclear Physics of Stars (Wenheim, Germany: Wiley-VCH)Google Scholar
Krane, K. S., 1987, Introductory Nuclear Physics (John Wiley and Sons)Google Scholar
Kratz, K.-L., Farouqi, K. & Pfeiffer, B., 2007, PrPNP, 59, 147 Google Scholar
Litvinsky, L. L., Murzin, A. V. & Shkarupa, A. M., 1993, PAN, 56, 1161 Google Scholar
Litvinsky, L. L., Zhigalov, Y. A., Libman, V. A., Murzin, A. V. & Shkarupa, A. M., 1995, PAN, 58, 164 Google Scholar
Macklin, R., Winters, R., Hill, N. & Harvey, J., 1983, ApJ, 274, 408 Google Scholar
Massimi, C. et al., 2008, in Proc. Int. Conf. Nuclear Data for Science and Technology, Eds. Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R. & Leray, S. (EDP Sciences), 1265 Google Scholar
Mengoni, A. et al., 2008, in Proc. NICX, Proceedings of Science, in pressGoogle Scholar
Monahan, J., 1960, in Fast Neutron Physics, part I, Eds. Marion, J. B. & Fowler, J. L. (NewYork: Interscience Publishers Inc.)Google Scholar
Mosconi, M., 2002, Master's Thesis, Università degli Studi di Torino Google Scholar
Mosconi, M., 2007, PhD Thesis, Karlsruhe Universität Google Scholar
Mosconi, M., Plag, R., Heil, M., Käppeler, F. & Mengoni, A., 2007, in Proc. 8th Int. Topical Meeting on Nuclear Applications and Utilization of Accelerators (American Nuclear Society), 807 Google Scholar
Mosconi, M. et al., 2007b, PrPNP, 59, 165 Google Scholar
Mosconi, M. et al., 2008, JPhG, 35, 014015Google Scholar
Praena, J., Mastinu, P. F., Calviani, M. & Martin, G., 2007, LNL Annual Report 2008, 214 Google Scholar
Ratynski, W. & Käppeler, F., 1988, PhRvC, 37, 595 Google Scholar
Rauscher, T., 2005, NuPhA, 758, 655 Google Scholar
Salvatores, M.,Aliberti, G. & Palmiotti, G., 2008, in Proc. Int. Conf. Nuclear Data for Science and Technology, Eds. Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R. & Leray, S. (EDP Sciences), 883 Google Scholar
Schmidt, D. et al., 2005, NIMPA, 545, 658 Google Scholar
Segawa, M. et al., 2007, PhRvC, 76, 022802Google Scholar
Tagliente, G. et al., 2008, in Proc. Int. Conf. Nuclear Data for Science and Technology, Eds. Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R. & Leray, S. (EDP Sciences), 1304 Google Scholar
Winters, R. R. & Macklin, R. L., 1982, PhRvC, 25, 208 Google Scholar
Wisshak, K., Guber, K., Voss, F., Käppeler, F. & Reffo, G., 1993, PhRvC, 48, 1401 Google Scholar
Woosley, S. E. & Fowler, W. A., 1979, ApJ, 233, 411 Google Scholar