Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T17:51:27.481Z Has data issue: false hasContentIssue false

Mode Conversion and Reflection of Langmuir Waves in an Inhomogeneous Solar Wind

Published online by Cambridge University Press:  05 March 2013

A. J. Willes
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia
Iver H. Cairns
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Beam-driven Langmuir waves in the solar wind are generated just above the electron plasma frequency, which fluctuates in the inhomogeneous solar wind plasma. Consequently, propagating Langmuir waves encounter regions in which the wave frequency is less than the local plasma frequency, where they can be reflected, mode converted to transverse electromagnetic waves, and trapped in density wells. The aim here is to investigate Langmuir wave reflection and mode conversion at a linear density gradient for typical solar wind parameters. It is shown that higher mode conversion efficiencies are possible than previously calculated, but that mode conversion occurs in a smaller region of parameter space. In addition, the possibility of detecting mode conversion with in situ spacecraft Langmuir wave observations is discussed.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Bale, S. D., Kellogg, P. J., Goetz, K., & Monson, S. J. 1998, Geophys. Res. Lett., 25, 9 CrossRefGoogle Scholar
Budden, K. G. 1985, The Propagation of Radio Waves (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Cairns, I. H. 1987, J. Plasma Physics, 38, 169 CrossRefGoogle Scholar
Field, G. B. 1956, ApJ, 124, 555 CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M., Lee, K., Lindman, E. L., & Morse, R. L. 1975, Phys. Rev. A, 11, 679 CrossRefGoogle Scholar
Hinkel-Lipsker, D. E., Fried, B. D., & Morales, G. L. 1992, Phys. Fluids B, 4, 559 CrossRefGoogle Scholar
Jones, D. 1980, Nature, 288, 225 Google Scholar
Kellogg, P. J. 1986, A&A, 169, 329 Google Scholar
Kellogg, P. J., Goetz, K., Monson, S. J., & Bale, S. D. 1999, J. Geophys. Res., 104, 17069 CrossRefGoogle Scholar
Means, R. W., Muschietti, L., Tran, M. Q., & Vaclavik, J. 1981, Phys. Fluids, 24, 2197 CrossRefGoogle Scholar
Melrose, D. B. 1980a, Aust. J. Phys., 33, 121 CrossRefGoogle Scholar
Melrose, D. B. 1980b, Space Sci. Rev., 26, 3 CrossRefGoogle Scholar
Robinson, P. A., Cairns, I. H., & Willes, A. J. 1994, ApJ, 422, 870 CrossRefGoogle Scholar
Yin, L., & Ashour-Abdalla, M. 1999, Phys. Plasmas, 6, 449 CrossRefGoogle Scholar
Yoon, P. H., Weatherwax, A. T., Rosenberg, T. J., LaBelle, J., & Shepherd, S. G. 1998, J. Geophys. Res., 103, 29267 CrossRefGoogle Scholar