Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T21:09:56.106Z Has data issue: false hasContentIssue false

MHD Turbulence in an Accretion Disk

Published online by Cambridge University Press:  25 April 2016

John F. Hawley
Affiliation:
University of Virginia, PO Box 3818, Charlottesville, VA 22903, USA. [email protected], [email protected]
Steven A. Balbus
Affiliation:
University of Virginia, PO Box 3818, Charlottesville, VA 22903, USA. [email protected], [email protected]

Abstract

A long-standing problem in the theory of astrophysical accretion disks has been to determine the nature of the stress that transports orbital angular momentum outward. The discovery of a local MHD instability is strong evidence that transport occurs through turbulent Maxwell and Reynolds stresses. Using numerical simulations, we have demonstrated that a weak seed magnetic field in an accretion disk shear flow is unstable and leads to sustained MHD turbulence at dynamically important levels.

Type
Galactic and Stellar
Copyright
Copyright © Astronomical Society of Australia 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balbus, S. A., & Hawley, J. F., 1991, ApJ, 376, 214 CrossRefGoogle Scholar
Balbus, S. A., & Hawley, J. F. 1992a, ApJ, 392, 662 Google Scholar
Balbus, S. A., & Hawley, J. F. 1992b, ApJ, 400, 610 Google Scholar
Blaes, O. M., & Balbus, S. A., 1994, ApJ, 421, 163 CrossRefGoogle Scholar
Chandrasekhar, S., 1960, Proc. Nat. Acad. Sci., 46, 53 Google Scholar
Chandrasekhar, S., 1961, Hydrodynamic and Hydromagnetic Stability (New York:Oxford)Google Scholar
Donnelly, R. J., & Ozima, M., 1960, Phys. Rev. Lett., 4, 497 CrossRefGoogle Scholar
Evans, C. R., & Hawley, J. F., 1988, ApJ, 332, 659 Google Scholar
Galeev, A. A., Rosner, R., & Vaiana, G. S., 1979, ApJ, 229, 318 Google Scholar
Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 125 CrossRefGoogle Scholar
Goodman, J., & Xu, G., 1994, ApJ, 432, 213 Google Scholar
Hawley, J. F., & Balbus, S. A., 1991, ApJ, 376, 223 Google Scholar
Hawley, J. F., & Balbus, S. A., 1992, ApJ, 400, 595 Google Scholar
Hawley, J. F., Gammie, C. F., & Balbus, S. A., 1995, ApJ, 440, 742 Google Scholar
Hawley, J. F., & Stone, J. M., 1995, comp. Phys. Comm., in pressGoogle Scholar
Hill, G. W., 1878, Am. J. Math., 1, 5 Google Scholar
Meneguzzi, M., Frisch, U., & Pouquet, A., 1981, Phys. Rev. Lett., 47, 1060 CrossRefGoogle Scholar
Moffat, H. K., 1978, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press)Google Scholar
Sakimoto, P. J., & Coroniti, F. V., 1989, ApJ, 342, 49 CrossRefGoogle Scholar
Shakura, N. I., & Sunyaev, R. A., 1973, A&A, 24, 337 Google Scholar
Stone, J. M., Hawley, J. F., Evans, C. R., & Norman, M.L. 1992, ApJ, 388, 415 Google Scholar
Stone, J. M., & Norman, M. L., 1992, ApJ Supp., 80, 819 Google Scholar
Toomre, A., 1981, in The Structure and Evolution of Normal Galaxies, ed. Fall, S. M. & Lynden-Bell, D. (Cambridge Univ. Press), 111 Google Scholar
Velikhov, E. P., 1959, Soviet Phys. JETP, 36, 995 Google Scholar
Wisdom, J., & Tremaine, S., 1988, AJ, 95, 925 CrossRefGoogle Scholar