Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T02:51:56.475Z Has data issue: false hasContentIssue false

A Method to Obtain a Maxwell–Boltzmann Neutron Spectrum at kT = 30 keV for Nuclear Astrophysics Studies

Published online by Cambridge University Press:  05 March 2013

J. Praena*
Affiliation:
INFN-Laboratori Nazionali di Legnaro, Padova, Italy
P. F. Mastinu
Affiliation:
INFN-Laboratori Nazionali di Legnaro, Padova, Italy
G. Martín Hernández
Affiliation:
Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, La Habana, Cuba
*
CCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A method to shape the neutron energy spectrum at low-energy accelerators is proposed by modification of the initial proton energy distribution. A first application to the superconductive RFQ of the SPES project at Laboratori Nazionali di Legnaro is investigated for the production of a Maxwell–Boltzmann neutron spectrum at kT = 30 keV via the 7Li(p, n)7Be reaction. Concept, solutions and calculations for a setup consisting of a proton energy shaper and a lithium target are presented. It is found that a power dentisity of 3 kW cm−2 could be sustained by the lithium target and a forward-directed neutron flux higher than 1010 s−1 at the sample position could be obtained. In the framework of the SPES project the construction of a LEgnaro NeutrOn Source (LENOS) for Astrophysics and for validation of integral nuclear data is proposed, suited for activation studies on stable and unstable isotopes.

Type
s-Process and n Capture
Copyright
Copyright © Astronomical Society of Australia 2009

References

Al-Abyad, M., Spahn, I., Sudár, S., Morsy, M., Comsan, M. N. H., Csikai, J., Qaim, S. M. & Coenen, H. H., 2006, Appl. Rad. Isotopes, 64, 717 Google Scholar
Bao, Z. Y., Beer, H., Käppeler, F., Voss, F., Wisshak, K. & Rauscher, T., 2000, ADNDT, 76, 70 Google Scholar
Beer, H., Voss, F. & Winters, R. R., 1992, ApJS, 80, 403 Google Scholar
Davis, J. R., 2001, ASM Specialty Handbook: Copper and Copper Alloys, Ed. Davis, J. R. (ASM International)Google Scholar
Kreith, F. et al., 1999, Heat and Mass Transfer Mechanical Engineering Handbook, 1999, Ed. Kreith, F. (Boca Raton: CRC Press LLC)Google Scholar
Lee, C. L. & Zhou, X. L., 1999, NIMPB, 152, 1 Google Scholar
Lienhard, J. H. IV, 2008, A heat transfer text book (3rd Ed.) (Cambridge: Phlogiston Press)Google Scholar
Macklin, R. L. & Gibbons, J. H., 1958, PhRv, 109, 105 Google Scholar
Pelowitz, D. B., 2005, MCNPX User's Manual Version 2.5.0, Ed. Pelowitz, D. B. Prete, G. & Covello, A., 2008 SPES Technical Design Report, INFN-LNL-223Google Scholar
Ratynski, W. & Käppeler, F., 1988, PhRvC, 37, 595 Google Scholar
Rolfs, C. E. & Rodney, W. S., 1998, Cauldrons in the Cosmos (Chicago: University of Chicago Press)Google Scholar
Sleicher, C. A. & Rouse, M. W., 1975, Int. J. Heat Mass Transfer, 18, 677 Google Scholar
Smith, M. S. et al., 2004, NPhA, 746, 569 Google Scholar
Sublet, J.-Ch. & Capote Noy, R., 2004, Report INDC (NDC)-465, IAEA, ViennaGoogle Scholar
Ziegler, J. F. et al., 1996, IBM Journal of Research and Development, 40, 1 Google Scholar