Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T07:13:01.905Z Has data issue: false hasContentIssue false

Is Alfvén’s Critical Ionization Velocity Important at the Galactic Centre?

Published online by Cambridge University Press:  25 April 2016

Jennifer Nicholls*
Affiliation:
Research Centre for Theoretical Astrophysics, University of Sydney, NSW 2006

Abstract

If the relative velocity between a plasma and a molecular cloud impinging on it exceeds the Alfvén critical ionization velocity, then the surface of the molecular cloud can be ionized. This phenomenon has been used to model some of the ionized regions at the Galactic Centre. A review of the mechanism behind Alfven’s critical ionization phenomenon is presented here, and its use at the Galactic Centre is discussed.

Type
Galactic and Stellar
Copyright
Copyright © Astronomical Society of Australia 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfvén, H., 1954, in On the origin of the solar system, OUP.Google Scholar
Alfvén, H., 1960, Rev. Mod. Phys., 32, 710.Google Scholar
Axnas, I., 1978, Astrophys. Space Sci., 55, 139.Google Scholar
Danielsson, L., 1973, Astrophys. Space Sci., 24, 459.Google Scholar
Dopita, M., Binette, L. and Tuohy, I., 1984, Astrophys. J., 282, 142.Google Scholar
Formisano, V., Galeev, A.A. and Sagdeev, R.Z., 1982, Planet. Space Sci., 30, 491.Google Scholar
Galeev, A.A., and Chabibrachmanov, I.Ch., 1983, Adv. Space Res., 3, 491.CrossRefGoogle Scholar
Genzel, R., Stacey, G.J., Harris, A.I., Townes, C.H., Geis, N., Graf, U.U., Poglitsch, A. and Stutzki, J., 1990, Astrophys. J., 356, 160.Google Scholar
Gombosi, T., 1991, Rev. Geophys., Supplement, 976.Google Scholar
Haas, M.R., Burton, M.G., Hollenbach, D.J. and Erikson, E.F., 1990, Bull. Am. Astron. Soc., 22, 1252.Google Scholar
Haerendel, G., 1982, Z. Naturforsch., A 37, 728.Google Scholar
Lehnert, B., Bergstrom, J. and Holmberg, S., 1966, Nucl. Fusion, 6, 231.Google Scholar
Lindeman, R.A., Vondrak, R.R., Freeman, J.W. and Snyder, C.W., 1974, J. Geophys. Rev., 79, 2287.Google Scholar
Liszt, R.S., Burton, W.B., and van der Hulst, J.M., 1985, Astron. Astrophys., 142, 237.Google Scholar
Morris, M. and Yusef-Zadeh, F., 1989, Astrophys. J., 343, 703.Google Scholar
Newell, P.T., 1985, Rev. Geophys., 23, 93.Google Scholar
Petelski, E.F., 1981, in Relation between Laboratory and Space Plasmas, Kikuchi, H. (ed), Dordrecht, Reidel.Google Scholar
Poglitsch, A., Stacey, G.J., Geis, N., Haggerty, M., Jackson, J., Rumitz, M., Genzel, R., and Townes, C.H., 1991, Astrophys. J., 374, L33.Google Scholar
Raadu, M., 1981, in Relation between Laboratory and Space Plasmas, Kikuchi, H. (ed), Dordrecht, Reidel.Google Scholar
Serabyn, E. and Gusten, R., 1987, Astron. Astrophys., 184, 133.Google Scholar
Serabyn, E. and Gusten, R., 1991, Astron. Astrophys., 242, 376.Google Scholar
Sherman, J.C., 1973, Astrophys. Space Sci., 24, 487.Google Scholar
Srnka, L.J., 1977, Phys. Earth Planet. Inter., 14, 321.Google Scholar
Torbert, R.B., and Newell, P.T., 1986, J. Geophys. Rev., 91, 9947.Google Scholar
Wescott, E.M., Stenbaek-Nielsen, H.C., Hallinan, T., Föppl, H. and Valenzuela, A., 1986a, J. Geophys. Rev., 91, 9923.Google Scholar
Wescott, E.M., Stenbaek-Nielsen, H.C., Hallinan, T., Föppl, H. and Valenzuela, A., 1986b, J. Geophys. Rev., 91, 9933.Google Scholar
Yusef-Zadeh, F., 1986, PhD thesis, Columbia University.Google Scholar