Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T17:31:30.093Z Has data issue: false hasContentIssue false

Interpretation of CEMP(s) and CEMP(s + r) Stars with AGB Models

Published online by Cambridge University Press:  05 March 2013

Sara Bisterzo*
Affiliation:
Dipartimento di Fisica Generale, Università di Torino, via P. Giuria, 1, 10125 Torino, Italy
Roberto Gallino
Affiliation:
Dipartimento di Fisica Generale, Università di Torino, via P. Giuria, 1, 10125 Torino, Italy
Oscar Straniero
Affiliation:
INAF Osservatorio Astronomico di Collurania, via M. Maggini, 64100 Teramo, Italy
Wako Aoki
Affiliation:
National Astronomical Observatory of Japan, 2-1-21 Osawa, Mitaka, Tokyo, 181-8588 Japan Department of Astronomical Science, The Graduate University of Advanced Studies, Mitaka, Tokyo, 181-8588 Japan
*
ECorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Asymptotic Giant Branch (AGB) stars play a fundamental role in s-process nucleosynthesis during their thermal pulsing phase. The theoretical predictions obtained by AGB models at different masses, s-process efficiencies, dilution factors and initial r-enrichment, are compared with spectroscopic observations of Carbon-Enhanced Metal-Poor stars enriched in s-process elements, CEMP(s), collected from the literature. We discuss here five stars as example, CS 22880-074, CS 22942-019, CS 29526-110, HE 0202-2204 and LP 625-44. All these objects lie on the main sequence or on the giant phase, clearly before the thermally pulsing AGB stage. The hypothesis of mass transfer from an AGB companion, would explain the observed s-process enhancement. CS 29526-110 and LP 625-44 are CEMP(s + r) objects, and are interpreted assuming that the molecular cloud, from which the binary system formed, was already enriched in r-process elements by SNII pollution. In several cases, the observed s-process distribution may be accounted for by AGB models of different initial masses with proper 13C-pocket efficiencies and dilution factors. Na (and Mg), produced via the neutron capture chain starting from 22Ne, may provide an indicator of the initial AGB mass.

Type
CEMP Stars
Copyright
Copyright © Astronomical Society of Australia 2009

References

Abia, C., Busso, M., Gallino, R., Domínguez, I., Straniero, O. & Isern, J., 2001, ApJ, 559, 1117 Google Scholar
Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C. & Ando, H., 2000, ApJ, 536, 97 CrossRefGoogle Scholar
Aoki, W., Ryan, S. G., Norris, J. E., Beers, T. C., Ando, H. & Tsangarides, S., 2002a, ApJ, 580, 1149 Google Scholar
Aoki, W., Norris, J. E., Ryan, S. G., Beers, T. C. & Ando, H., 2002b, PASJ, 54, 933 Google Scholar
Aoki, W. et al., 2002c, PASJ, 54, 427 Google Scholar
Aoki, W., Ryan, S. G., Norris, J. E. et al., 2002d, ApJ, 580, 1149 Google Scholar
Aoki, W., Bisterzo, S., Gallino, R., Beers, T. C., Norris, J. E., Ryan, S. G. & Tsangarides, S., 2006, ApJ, 650, 127 Google Scholar
Aoki, W., Beers, T., Christlieb, N. & Arimoto, N., 2007, ApJ, 655, 492 CrossRefGoogle Scholar
Aoki, W. et al., 2008, ApJ, 678, 1351 Google Scholar
Arlandini, C., Käppeler, F., Wisshak, K., Gallino, R., Lugaro, M., Busso, M. & Straniero, O., 1999, ApJ, 525, 886 Google Scholar
Barklem, P. S. et al., 2005, A&A, 439, 129 Google Scholar
Bisterzo, S. & Gallino, R., 2008, AIPC, 1001, 131 Google Scholar
Bisterzo, S., Gallino, R., Straniero, O., Ryan, S. & Beers, T.C., 2006, AIPC, 847, 368 Google Scholar
Bisterzo, S., Gallino, R., Straniero, O., Ivans, I. I., Preston, G. W. & Aoki, W., 2008, AIP Conf. Proc., 990, 330 Google Scholar
Busso, M., Lambert, D. L., Beglio, L., Gallino, R., Raiteri, C. M. & Smith, V. V., 1995, ApJ, 446, 775 Google Scholar
Cristallo, S., Piersanti, L., Straniero, O., Gallino, R., Domínguez, I., Käppeler, F. et al., 2009, PASA, in pressGoogle Scholar
Jonsell, K., Barklem, P. S., Gustafsson, B., Christlieb, N., Hill, V., Beers, T. C. & Holmberg, J., 2006, A&A, 451, 651 Google Scholar
Lodders, K., 2003, ApJ, 591, 1220 Google Scholar
Nollett, K. M., Busso, M. & Wasserburg, G. J., 2003, ApJ, 582, 1036 CrossRefGoogle Scholar
Norris, J. E., Ryan, G., & Beers, T. C., 1997, ApJ, 488, 350 Google Scholar
Preston, G. W. & Sneden, C., 2001, AJ, 122, 1545 Google Scholar
Schuler, S. C., Margheim, S. J., Sivarani, T., Asplund, M., Smith, V. V., Cunha, K. & Beers, T. C., 2008, AJ, 136, 2244 Google Scholar
Sneden, C., Cowan, J. J. & Gallino, R., 2008, ARA&A, 46, 241 Google Scholar
Straniero, O., Domínguez, I., Cristallo, S. & Gallino, R., 2003, PASA, 20, 389 Google Scholar
Straniero, O., Gallino, R., Busso, M., Chiefei, A., Raiteri, C. M., Limongi, M. & Salaris, M., 1995, ApJ, 440, 85 Google Scholar
Tsangarides, S. A., 2005, PhD Thesis, Open University (United Kingdom), DAI-C 66/04Google Scholar
Vanhala, H. A. T. & Cameron, A. G. W., 1998, ApJ, 508, 291 Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R. & Nollett, K. M., 2006, NuPhA, 777, 5 Google Scholar
Winckler, N., Dababneh, S., Heil, M., Käppeler, F., Gallino, R. & Pignatari, M., 2006, ApJ, 647, 685 Google Scholar