Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T08:09:01.523Z Has data issue: false hasContentIssue false

Gravitational clearing of natural satellite orbits

Published online by Cambridge University Press:  08 February 2022

Roderick J. Hill*
Affiliation:
7 Knightsbridge Road, Leabrook, SA, 5068, Australia
*
Corresponding author: Roderick J. Hill, E-mail: [email protected]

Abstract

The distribution of diameters and orbital distances from the parent body of 156 named moons of the planets in the Solar System is not random. All 11 moons with diameters larger than $1\,000\,\mathrm{km}$ are positioned between $400\,000\,\mathrm{km}$ and 4 million km from the parent, whereas the far more numerous small moons are distributed on both sides of this central region and are largely absent from the region in between. This small-satellite ‘exclusion region’ is particularly evident for the gas giants since they have multiple satellites spanning a wide range of distances from the parent. Application of mathematical criteria analogous to those that have been used to help define the ‘gravitational clearing’ of planetary orbits around the Sun suggests that the absence of small satellites in this region around the planets may be a result (atleast in part) of gravitational clearing by the large moons present at these distances from the parent. The most significant exception to the observed diameter-distance distribution—Hyperion, on Saturn—is attributed to its 3:4 orbital resonance with Titan, while other obvious exceptions are the Trojan satellites of Saturn’s moons Tethys and Dione. The smallest satellite diameter that seems necessary for clearing of its ‘sphere of influence’ is around $400\,\mathrm{km}$ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnor, C. B., & Hamilton, D. P. 2006, Natur, 441, 192.CrossRefGoogle Scholar
Alibert, Y., Mordasini, C., Benz, W., & Winisdoerffer, C. 2005, A&A, 434, 343.Google Scholar
Astakhov, S. A., Burbanks, A. D., Wiggins, S., & Farrelly, D. 2003, Natur 423, 264.CrossRefGoogle Scholar
Batygin, K. & Brown, M. E. 2010, ApJ, 716, 1323.Google Scholar
Batygin, K., & Morbidelli, A. 2020, ApJ, 894, 143.Google Scholar
Bitsch, B., Izidoro, A., Johansen, A., Raymond, S. N., Morbidelli, A., Lambrechts, M., & Jacobson, S. A. 2019, A&A, 623, A88.Google Scholar
Brown, M. E. & Butler, B. J. 2018, AJ, 156, 164.Google Scholar
Burns, J. A. & Gladman, B. J. 1996, PSS, 46, 14011407.Google Scholar
Canup, R. M., & Ward, W. R. 2002, AJ, 124, 3404.Google Scholar
Canup, R. M., & Ward, W. R. 2006, Natur, 441, 834.CrossRefGoogle Scholar
Gladman, B. 1993, Icar, 106, 247.CrossRefGoogle Scholar
Hahn, J. M. & Malhotra, R. 1999, AJ, 117, 3041.Google Scholar
Hamilton, D. P., & Burns, J. A. 1991, Icar, 92, 118.CrossRefGoogle Scholar
Hill, R. J. 2020a, Australian Sky Telescope, May-June 2020, 56.Google Scholar
Hill, R. J. 2020b, Chasing Solar Eclipses. A Comprehensive Guide (Kindle Direct Publishing).Google Scholar
IAU (International Astronomical Union) Press Release iau0603, The results of the Resolution votes, https://www.iau.org/news/pressreleases/detail/iau0603/, 24 August 2006, Prague.Google Scholar
Kokubo, E., & Ida, S. 1995, Icar, 114, 247 CrossRefGoogle Scholar
Margot, J-L., 2015, AJ, 150, 185 CrossRefGoogle Scholar
Nesvorný, D. 2018, ARA&A, 56, 137 CrossRefGoogle Scholar
Nesvorný, D., Vokrouhlický, D., & Deienno, R. 2014, ApJ, 784, 22 CrossRefGoogle Scholar
Nesvorný, D., Vokrouhlický, D., & Morbidelli, A. 2007, ApJ, 133, 1962 CrossRefGoogle Scholar
Peale, S. J. 1999, ARA&A, 37, 533 CrossRefGoogle Scholar
Petit, A. C., Pichierri, G., Davies, M. B. & Johansen, A. 2020. A&A, 641,A176 CrossRefGoogle Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996. Icar, 124, 62 CrossRefGoogle Scholar
Reid, M. J. 1973. Icar, 20, 240.CrossRefGoogle Scholar
Showalter, M. R., & Hamilton, D. P. 2015. Natur, 522, 45 CrossRefGoogle Scholar
Soter, S. 2006. AJ, 132, 2513 CrossRefGoogle Scholar
Stern, S. A., & Levison, H. F. 2002. Highlights of Astronomy, 12, 205-213, as Presented at the XXIVth General Assembly of the IAU-2000 [Manchester, UK, 7–18 August 2000].CrossRefGoogle Scholar
Sutherland, A. P., & Kratter, K. M. 2019. MNRAS, 487, 3288.Google Scholar
Tsiganis, K., Gomes, A., Morbidelli, A., & Levison, H. F. 2005. Natur, 435, 459 CrossRefGoogle Scholar
Wikipedia, https://en.wikipedia.org/wiki/Natural satellite, 2020 and references therein.Google Scholar