Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T09:31:48.005Z Has data issue: false hasContentIssue false

Generation of Coronal Currents by the Solar Convection Zone

Published online by Cambridge University Press:  05 March 2013

D. J. Galloway
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Y. Uchida
Affiliation:
Department of Physics, Science University of Tokyo, Kagurazaka, Shinjuku-ku, 162 Tokyo, Japan
N. O. Weiss
Affiliation:
Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Solar flares are thought to be caused by reconnection of magnetic fields and their associated electric currents in the solar corona. The currents have to be there to provide available energy over and above the current-free minimum energy state, but what generates them has been little discussed. This paper investigates the idea that twisting motions in the turbulent convection zone below may provide a natural source for the currents and explain some of their properties. The twists generate upward-propagating Alfvén waves with a Poynting flux of the right order of magnitude to power a flare. Depending on the depth it takes place, the twisting event that initiates a particular flare may occur hours, days or even months before the flare itself.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

D'Silva, S., & Choudhuri, A. R. 1993, A&A, 272, 621 Google Scholar
Galloway, D. J., & Jones, C. A. 1995, PASA, 12, 180 Google Scholar
Galloway, D. J., & Moore, D. R. 1979, Geophys. Astrophys. Fluid Dynamics, 12, 73 Google Scholar
Galloway, D. J., Proctor, M. R. E., & Weiss, N. O. 1977, Nature, 266, 686 Google Scholar
Galloway, D. J., Proctor, M. R. E., & Weiss, N. O. 1978, J. Fluid Mech., 87, 243 Google Scholar
Jones, C. A., & Galloway, D. J. 1993, J. Fluid Mech., 253, 297 Google Scholar
Leka, K. D., Canfield, R. C., McClymont, A. N., & Van Driel Gesztelyi, L. 1996, ApJ, 462, 547 Google Scholar
Longcope, D. W., Fisher, G. H., & Pevtsov, A. A. 1998, ApJ, 507, 117L Google Scholar
Longcope, D. W., Linton, M. G., Pevtsov, A. A., Fisher, G. H., & Klapper, I. 1999, in Magnetic Helicity in Space and Laboratory Plasmas, eds M. Brown, R. Canfield, & A. Pevtsov (http://solar.physics.montana.edu/dana/pubs.html)Google Scholar
Melrose, D. B. 1995, ApJ, 451, 391 Google Scholar
Melrose, D. B. 1996, ApJ, 471, 497 Google Scholar
Melrose, D. B. 1997, ApJ, 486, 521 Google Scholar
Miyagoshi, T., Uchida, Y., Yabiku, T., Hirose, S., & Cable, S. 2001, PASJ, 53, 341 Google Scholar
Parker, E. N. 1996, ApJ, 471, 497 Google Scholar
Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R. 1994, ApJ, 425, L117 Google Scholar
Priest, E. R. 1982, Solar Magnetohydrodynamics (Dordrecht: D. Reidel)Google Scholar
Priest, E. R., & Forbes, T. G. 2000, Magnetic Reconnection (Cambridge: Cambridge University Press)Google Scholar
Proctor, M. R. E., & Galloway, D. J. 1979, J. Fluid. Mech., 91, 273 Google Scholar
Schmidt, H. U. 1964, NASA Symposium on Solar Flares, NASA SP-50, ed. W. Hess, p. 107 Google Scholar
Uchida, Y., & Shibata, K. 1988, Solar Phys., 116, 291 Google Scholar
Uchida, Y., Miyagoshi, T., Yabiku, T., Cable, S., & Hirose, S. 2001, PASJ, 53, 311 Google Scholar
Wheatland, M. S., & Uchida, Y. 1999, Solar Phys., 189, 163 Google Scholar