Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T22:34:14.452Z Has data issue: false hasContentIssue false

Fundamental Relationships in Galactic Disks

Published online by Cambridge University Press:  16 May 2016

Stuart D. Ryder*
Affiliation:
School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
*
Present address: Joint Astronomy Centre, 660 N. A'Ohoku Place, Hilo, HI 96720, USA [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Although a number of correlations have been demonstrated between observable parameters in galaxies, such as surface brightness, luminosity, metallicity, etc., debate continues as to which of these parameters are truly fundamental. Following a major surface photometry program and Hii region abundance analysis, we have been able to show that the surface density of recent massive star formation, the surface density of stars already formed, and the mean oxygen abundance at a given galactic radius are all fundamentally related within and between the disks of spiral galaxies. Such relationships can serve as powerful constraints on models of galactic evolution, requiring, for instance, a star formation law dependent not only on gas surface density, but also on the total mass surface density.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1997

References

Buchhorn, M. 1992, Ph.D. Thesis, Australian National UniversityGoogle Scholar
Djorgovski, S., & Davis, M. 1987, ApJ, 313, 59 Google Scholar
Dopita, M. A. 1985, ApJ, 295, L5CrossRefGoogle Scholar
Dopita, M. A. 1990, in The Interstellar Medium in External Galaxies, ed. H. A. Thronson & J. M. Shull (Dordrecht: Kluwer), 437Google Scholar
Dopita, M. A., & Evans, I. N. 1986, ApJ, 307, 431 Google Scholar
Dopita, M. A., & Ryder, S. D. 1994, ApJ, 430, 163Google Scholar
Edmunds, M. G., & Pagel, B. E. J. 1984, MNRAS, 211, 507 Google Scholar
Edmunds, M. G., & Phillipps, S. 1989, MNRAS, 241, 9PGoogle Scholar
Gilmore, G. 1989, in The Milky Way as a Galaxy (19th Advanced Course of the Swiss Society of Astronomy and Astrophysics), ed. R. Buser & I. King (Sauverny: Geneva Observatory), 281 Google Scholar
Jølrgensen, I., Franx, M., & Kjrergaard, P. 1996, MNRAS, 280, 167Google Scholar
Kennicutt, R. C. 1983, ApJ, 272, 54Google Scholar
McCall, M. L. 1982, PhD thesis, University of TexasGoogle Scholar
Matteucci, F., Franco, J., François, P., & Treyer, M. A. 1989, Rev. Mexicana Astron. Astrofis., 18, 145 Google Scholar
Phillipps, S., & Edmunds, M. G. 1991, MNRAS, 251, 84Google Scholar
Ryder, S. D. 1995, ApJ, 444, 610 CrossRefGoogle Scholar
Ryder, S. D., & Dopita, M. A. 1994, ApJ, 430, 142Google Scholar
Vila-Costas, M. B., & Edmunds, M. G. 1992, MNRAS, 259, 121Google Scholar
Webster, B. L., & Smith, M. G. 1983, MNRAS, 204, 743 Google Scholar
Wevers, B. M. H. R. 1984, PhD thesis, University of GroningenGoogle Scholar
Wilson, I. R. G. 1983, PhD thesis, Australian National UniversityGoogle Scholar