Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T14:01:42.477Z Has data issue: false hasContentIssue false

Estimation of Galactic Model Parameters in High Latitudes with SDSS

Published online by Cambridge University Press:  05 March 2013

S. Bilir*
Affiliation:
Istanbul University Science Faculty, Department of Astronomy and Space Sciences, 34119, University-Istanbul, Turkey
A. Cabrera-Lavers
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain GTC Project Office, E-38205 La Laguna, Tenerife, Spain
S. Karaali
Affiliation:
Beykent University, Faculty of Science and Letters, Department of Mathematics and Computing, Ayazağa 34396, Istanbul, Turkey
S. Ak
Affiliation:
Istanbul University Science Faculty, Department of Astronomy and Space Sciences, 34119, University-Istanbul, Turkey
E. Yaz
Affiliation:
Istanbul University Science Faculty, Department of Astronomy and Space Sciences, 34119, University-Istanbul, Turkey
M. López-Corredoira
Affiliation:
Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain
*
ECorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We estimated the Galactic model parameters for a set of 36 high-latitude fields included in the currently available Data Release 5 (DR 5) of the Sloan Digital Sky Survey (SDSS), to explore their possible variation with the Galactic longitude. The thick disc scaleheight moves from ∼550 pc at 120 < l < 150° to ∼720 pc at 250 < l < 290°, while the thin disc scaleheight is as large as ∼195 pc in the anticenter direction and ∼15% lower at |l| < 30°. Finally, the axis ratio (c/a) of the halo changes from a mean value of ∼0.55 in the two first quadrants of the Galaxy to ∼0.70 at 190 < l < 300°. For the halo, the reason for the dependence of the model parameters on the Galactic longitude arises from the well known asymmetric structure of this component. However, the variation of the model parameters of the thin and thick discs with Galactic longitude originates from the gravitational effect of the Galactic long bar. Moreover, the excess of stars in quadrant I (quadrant III) over quadrant IV (quadrant II) is in agreement with this scenario.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2008

References

Adelman-McCarthy, J. K. et al., 2007, ApJS, 172, 634 CrossRefGoogle Scholar
Ak, S., Bilir, S., Karaali, S., Buser, R. & Cabrera-Lavers, A., 2007a, NewA, 12, 605 Google Scholar
Ak, S., Bilir, S., Karaali, S. & Buser, R., 2007b, AN, 328, 169 Google Scholar
Alves, D. R., 2000, ApJ, 539, 732 Google Scholar
Bahcall, J. N., 1986, ARA&A, 24, 577 Google Scholar
Becker, W., 1965, ZA, 62, 54 Google Scholar
Bertin, A. & Arnouts, S., 1996, A&AS, 117, 393 Google Scholar
Blanton, M. R. et al., 2005, AJ, 129, 2562 Google Scholar
Bilir, S., Karaali, S. & Tunçel, S., 2005, AN, 326, 321 Google Scholar
Bilir, S., Karaali, S., Ak, S., Yaz, E. & Hamzaoǧlu, E., 2006a, NewA, 12, 234 Google Scholar
Bilir, S., Karaali, S. & Gilmore, G., 2006b, MNRAS, 366, 1295 Google Scholar
Bilir, S., Karaali, S., Güver, T., Karataş, Y. & Ak, S., 2006c, AN, 327, 72 Google Scholar
Burton, W. B., 1988, Galactic and Extragalactic Radio Astronomy, 2nd version, Eds. Verschuur, G. L. & Kellerman, K. I. (Berlin: Springer-Verlag)Google Scholar
Buser, R. & Fenkart, R., 1990, A&A, 239, 243 Google Scholar
Buser, R., Rong, J. & Karaali, S., 1998, A&A, 331, 934 Google Scholar
Buser, R., Rong, J. & Karaali, S., 1999, A&A, 348, 98 Google Scholar
Cabrera-Lavers, A., Bilir, S., Ak, S.,Yaz, E. & López-Corredoira, M., 2007, A&A, 464, 565 Google Scholar
Carney, B. W., 1979, ApJ, 233, 211 Google Scholar
Chen, B. et al., 2001, ApJ, 553, 184 Google Scholar
de Vaucouleurs, G., 1948, AnAp, 11, 247 Google Scholar
Debattista, V. P. & Sellwood, J. A., 1998, ApJ, 493, L5 Google Scholar
Drimmel, R. & Spergel, D. N., 2001, ApJ, 556, 181 CrossRefGoogle Scholar
Du, C. et al., 2003, A&A, 407, 541 Google Scholar
Du, C., Ma, J., Wu, Z. & Zhou, X., 2006, MNRAS, 372, 1304 CrossRefGoogle Scholar
Fan, X., 1999, AJ, 117, 2528 Google Scholar
Fenkart, R., 1989a, A&AS, 78, 217 Google Scholar
Fenkart, R., 1989b, A&AS, 79, 51 Google Scholar
Fenkart, R., 1989c, A&AS, 80, 89 Google Scholar
Fenkart, R., 1989d, A&AS, 81, 187 Google Scholar
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K. & Schneider, D. P., 1996, AJ, 111, 1748 Google Scholar
Gilmore, G. & Reid, N., 1983, MNRAS, 202, 1025 Google Scholar
Gilmore, G., Wyse, R. F. G. & Kuijken, K., 1989, ARA&A, 27, 555 Google Scholar
Gilmore, G., Wyse, R. F. G. & Jones, J. B., 1995, AJ, 109, 1095 Google Scholar
Helmi, A. et al., 2003, ApJ, 586, 195 Google Scholar
Hernquist, L. & Weinberg, M. D., 1992, ApJ, 400, 80 Google Scholar
Ivezic, Z., Lupton, R. H., Schlegel, D., Boroski, B. et al., 2004, AN, 325, 583 Google Scholar
Jahreiss, H. & Wielen, R., 1997, in HIPPARCOS – Venice '97 (ESA SP-402), Eds. Battrick, B., Perryman, M. A. C. & Bernacca, P. L., 675 Google Scholar
Jurić, M. et al., 2008, ApJ, 673, 864 Google Scholar
Karaali, S., Bilir, S. & Hamzaoǧlu, E., 2004, MNRAS, 355, 307 Google Scholar
Karaali, S., Bilir, S. & Tunçel, S., 2005, PASA, 22, 24 Google Scholar
Karaali, S., Bilir, S., Yaz, E., Hamzaoǧlu, E. & Buser, R., 2007, PASA, 24, 208 Google Scholar
Kent, S. M., Dame, T. M. & Fazio, G., 1991, ApJ, 378, 131 Google Scholar
Levine, E. S., Blitz, L. & Heiles, C., 2006, ApJ, 643, 881 Google Scholar
López-Corredoira, M., Cabrera-Lavers, A., Garzón, F. & Hammersley, P. L., 2002, A&A, 394, 883 Google Scholar
López-Corredoira, M., Cabrera-Lavers, A., Gerhard, O. & Garzón, F., 2004, A&A, 421, 953 Google Scholar
Lupton, R. H., Gunn, J. E., Ivezic, Z., Knapp, G. R., Kent, S. & Yasuda, N., 2001, in ASPC: Astronomical Data Analysis Software and Systems X, Eds. Harden, F. R., Jr., Primini, F. A. & Payne, H. E., 238, 269 Google Scholar
Malmquist, G., 1920, MeLu2, 22 Google Scholar
Majewski, S. R., 1993, ARA&A, 31, 575 Google Scholar
Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M. & Picaud, S., 2006, A&A, 453, 635 Google Scholar
Momany, Y., Zaggia, S. R., Gilmore, G., Piotto, G., Carraro, G., Bedin, L. R. & De Angeli, F., 2006, A&A, 451, 515 Google Scholar
Nakanishi, H. & Sofue, Y., 2003, PASJ, 55, 191 Google Scholar
Narayan, C. A. & Jog, C. J., 2002, A&A, 394, 89 Google Scholar
Newberg, H. J. & Yanny, B., 2005, in ASPC: Astrometry in the Age of the next Generation of Large Telescopes, Eds. Seidelmann, P. K. & Monet, A. K. B., 338, 210 Google Scholar
Newberg, H. J. & Yanny, B., 2006, Journal of Physics: Conference Series, 47, 195 Google Scholar
Newberg, H. J., Mayeur, P. A. & Yanny, B., 2006, MmSAI, 77, 1049 Google Scholar
Ojha, D. K., Bienaymé, O., Mohan, V. & Robin, A. C., 1999, A&A, 351, 945 Google Scholar
Parker, J. E., Humphreys, R. M. & Larsen, J. A., 2003, AJ, 126, 1346 CrossRefGoogle Scholar
Phleps, S., Meisenheimer, K., Fuchs, B. & Wolf, C., 2000, A&A, 356, 108 Google Scholar
Phleps, S., Drepper, S., Meisenheimer, K. & Fuchs, B., 2005, A&A, 443, 929 Google Scholar
Pier, J. R., Munn, J. A., Hindsley, R. B., Hennessy, G. S., Kent, S. M., Lupton, R. H. & Ivezic, Z., 2003, AJ, 125, 1559 Google Scholar
Reid, M. J., 1993, ARA&A, 31, 345 Google Scholar
Robin, A. C., Haywood, M., Crézé, M., Ojha, D. K. & Bienaymé, O., 1996, A&A, 305, 125 Google Scholar
Robin, A. C., Reylé, C. & Crézé, M., 2000, A&A, 359, 103 Google Scholar
Schlegel, D. J., Finkbeiner, D. P. & Davis, M., 1998, ApJ, 500, 525 Google Scholar
Siegel, M. H., Majewski, S. R., Reid, I. N. & Thompson, I. B., 2002, ApJ, 578, 151 Google Scholar
Voskes, T. & Burton, W. B., 2006, MSc Thesis, University of Leiden (astro-ph/0601653) Google Scholar
Wyse, R. F. G. & Gilmore, G., 2005, astro-ph/0510025Google Scholar
Xu, Y., Deng, L. C. & Hu, J. Y., 2006, MNRAS, 368, 1811 Google Scholar
Young, P. J., 1976, AJ, 81, 807 Google Scholar
York, D. G. et al., 2000, AJ, 120, 1579 Google Scholar