Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T09:53:00.392Z Has data issue: false hasContentIssue false

Equatorial Pulsar Winds

Published online by Cambridge University Press:  05 March 2013

Jan Kuijpers*
Affiliation:
Department of Astrophysics, University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands Astronomical Institute, Utrecht University, PO Box 80 000, 3508 TA Utrecht, The Netherlands; [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atraditional problem in pulsar wind physics has been the nature of the pulsar wind.Ontheoretical grounds, the wind is expected to be dominated by Poynting flux associated with the outgoing magnetic field lines anchored on the polar caps of the rotating neutron star, while observations of the Crab Nebula demonstrate that the wind must be dominated by kinetic energy before the termination shock. Here we suggest a new approach to this old problem by studying the distributed currents rather than the singular sheet currents which have been the object of study in most work.We find that, at a distance well in between the light cylinder and the termination shock, current starvation sets in, and electric fields develop along the magnetic field lines which cause the current to dissipate and convert at least half of the Poynting flux into kinetic energy flux in a relatively thin shell. In the shell, at least half of the current closes across the magnetic field lines, the pitch of the spiralling magnetic field lines jumps downward strongly, and the outer pattern of magnetic field lines slips over the inner pattern.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2001

References

Begelman, M. C. 1998, ApJ, 493, 291 CrossRefGoogle Scholar
Bogovalov, S. V. 1999, A&A, 349, 1017 Google Scholar
Bogovalov, S. V., & Aharonian, F. A. 2000, MNRAS, 313, 504 CrossRefGoogle Scholar
Clarke, J. T. 1996, Science, 274, 404 CrossRefGoogle Scholar
Coroniti, F. V. 1990, ApJ, 349, 538 Google Scholar
Dungey, J. W. 1958, Cosmic Electrodynamics (Cambridge: Cambridge University Press)Google Scholar
Goldreich, P., & Lynden-Bell, D. 1969, ApJ, 156, 59 CrossRefGoogle Scholar
Hesse, M., & Schindler, K. 1988, J. Geophys. Res., 93, 5559 Google Scholar
Hoshino, M., Arons, J., Gallant, Y. A., & Langdon, A. B. 1992, ApJ, 390, 454 CrossRefGoogle Scholar
Kennel, C. F., & Coroniti, F. V. 1984, ApJ, 283, 694 CrossRefGoogle Scholar
Kirk, J. G., & Lyubarsky, Y. E. 2001, PASA, 18 Google Scholar
Lyubarsky, Y. E., & Kirk, J. G. 2001, ApJ, 547, 437 CrossRefGoogle Scholar
Melatos, A., & Melrose, D. B. 1996a, in Pulsars: Problems and Progress, IAU Colloquium 160, eds S. Johnston, M. A. Walker, & M. Bailes, ASP Conference Series 105, 421 CrossRefGoogle Scholar
Melatos, A., & Melrose, D. B. 1996b, MNRAS, 279, 1168 CrossRefGoogle Scholar
Mestel, L. 1999, Stellar Magnetism (Oxford: Clarendon Press)Google Scholar
Mestel, L. 2001, PASA, 18 Google Scholar
Michel, F. C. 1971, Comments on Astrophysics and Space Physics, III, No. 3, 80 Google Scholar
Piddington, J. H., & Drake, J. F. 1968, Nature, 217, 935 CrossRefGoogle Scholar
Priest, E. R., & Forbes, T. 2000, Magnetic Reconnection: MHD Theory and Applications (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Rees, M. J., & Gunn, J. E. 1974, MNRAS, 167, 1 CrossRefGoogle Scholar
Schindler, K., Hesse, M., & Birn, J. 1988, J. Geophys. Res., 93, 5547 CrossRefGoogle Scholar
Shibata, S. 1995, MNRAS, 276, 537 CrossRefGoogle Scholar
Shibata, S. 1996, in Pulsars: Problems and Progress, IAU Colloquium 160, eds S. Johnston, M. A. Walker, & M. Bailes, ASP Conference Series 105, 423 (San Francisco: ASP)Google Scholar
Tanvir, N. R., Thomson, R. C., & Tsikarishvili, E. G. 1997, New Astronomy, 1, 311 CrossRefGoogle Scholar