Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T21:54:07.967Z Has data issue: false hasContentIssue false

The Emergent Flux and Effective Temperature of δ Canis Majoris

Published online by Cambridge University Press:  05 March 2013

J. Davis*
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
A. J. Booth
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
M. J. Ireland
Affiliation:
Planetary Science, MS 150-21, Caltech, 1200 E. California Blvd, Pasadena, CA 91125, USA
A. P. Jacob
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
J. R. North
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
S. M. Owens
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
J. G. Robertson
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
W. J. Tango
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
P. G. Tuthill
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
*
DCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New angular diameter determinations for the bright southern F8 supergiant δ CMa enable the bolometric emergent flux and effective temperature of the star to be determined with improved accuracy. The spectral flux distribution and bolometric flux have been determined from published photometry and spectrophotometry and combined with the angular diameter to derive the bolometric emergent flux ℱ = (6.50 ± 0.24) × 107 Wm−2 and the effective temperature Teff = 5818 ± 53 K. The new value for the effective temperature is compared with previous interferometric and infrared flux method determinations. The accuracy of the effective temperature is now limited by the uncertainty in the bolometric flux rather than by the uncertainty in the angular diameter.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2007

References

Bessell, M. S., Castelli, F. & Plez, B., 1998, A&A, 333, 231 Google Scholar
Blackwell, D. E. & Shallis, M. J., 1977, MNRAS, 180, 177 Google Scholar
Blackwell, D. E., Petford, A. D. & Shallis, M. J., 1980, A&A, 82, 249 Google Scholar
van der Bliek, N. S., Manfroid, J. & Bouchet, P., 1996, A&Amp;AS, 119, 547 Google Scholar
Burningham, B., Naylor, T., Jeffries, R. D. & Devey, C. R., 2007 MNRAS, in pressGoogle Scholar
Carter, B. S., 1990, MNRAS, 242, 1 CrossRefGoogle Scholar
Code, A. D., Davis, J., Bless, R. C. & Hanbury Brown, R., 1976, ApJ, 203, 417 Google Scholar
Cohen, M., Walker, R. G. & Witteborn, F. C., 1992, AJ, 104, 2030 Google Scholar
Cohen, M., Witteborn, F. C., Carbon, D. F., Davies, J. K., Wooden, D. H. & Bregman, J. D., 1996, AJ, 112, 2274 Google Scholar
Cousins, A. W., 1980, SAAOC, 1, 234 Google Scholar
Danks, A. C. & Dennefeld, M., 1994, PASP, 106, 382 Google Scholar
Davis, J., et al., 2007, PASA, 24, 138 Google Scholar
Davis, J., Tango, W. J. & Booth, A. J., 2000, MNRAS, 318, 387 Google Scholar
Davis, J., Tango, W. J., Booth, A. J., ten Brummelaar, T. A., Minard, R. A. & Owens, S. M., 1999a, MNRAS, 303, 773 CrossRefGoogle Scholar
Davis, J., Tango, W. J., Booth, A. J., Thorvaldson, E. D. & Giovannis, J., 1999b, MNRAS, 303, 783 Google Scholar
Davis, J. & Webb, R. J., 1974, MNRAS, 168, 163 Google Scholar
Engels, D., Sherwood, W. A., Wamsteker, W. & Schultz, G. V., 1981, A&Amp;AS, 45, 5 Google Scholar
Feinstein, A., 1967, ApJ, 149, 107 Google Scholar
Fernie, J. D., 1982, ApJ, 257, 193 Google Scholar
Glass, I. S., 1974, MNSSA, 33, 53 Google Scholar
Hanbury Brown, R., Davis, J., Allen, L. R. & Rome, J. M., 1967, MNRAS, 137, 393 CrossRefGoogle Scholar
Hanbury Brown, R., Davis, J. & Allen, L. R., 1974, MNRAS, 167, 121 Google Scholar
Hauschildt, P. H., Allard, F., Ferguson, J., Baron, E. & Alaxander, D. R., 1999, ApJ, 525, 871 Google Scholar
Hayes, D. S., 1985, in IAU Symp. 111, Calibration of Fundamental Stellar Quantities, Eds. Hayes, D. S., Pasinetti, L. E. & Davis Philip, A. G. (Dordrecht, Reidel), 225 Google Scholar
IRAS Team, 1988, The IRAS Point Source Catalogue, NASA RP–1190Google Scholar
Johnson, H. L., 1966, ARA&A, 4, 193 Google Scholar
Johnson, H. L., Iriarte, B., Mitchell, R. I. & Wisniewski, W. Z., 1966, CoLPL, 4, 99 Google Scholar
Kaltcheva, N. T., 2000, MNRAS, 318, 1023 CrossRefGoogle Scholar
Kiehling, R., 1987, A&Amp;AS, 69, 465 Google Scholar
Luck, R. E. & Lambert, D. L., 1985, ApJ, 298, 782 Google Scholar
McWilliam, A., 1991, AJ, 101, 1065 Google Scholar
Megessier, C., 1995, A&A, 296, 771 Google Scholar
Oke, J. B. & Schild, R. E., 1970, ApJ, 161, 1015 CrossRefGoogle Scholar
Ochsenbein, F., Bauer, P. & Marcout, J., 2000, A&Amp;AS, 143, 23 Google Scholar
Parsons, S. B. & Bell, R. A., 1975, in Dudley Observatory Report No. 9, Multicolor Photometry and the Theoretical HR Diagram, Eds. Davis Philip, A. G. & Hayes, D. S. (Albany, New York: Dudley Observatory), 73 Google Scholar
Price, S. D., Paxson, C., Engelke, C. & Murdock, T. L., 2004, AJ, 128, 889 Google Scholar
Rieke, G. H. & Lebofsky, M. J., 1985, ApJ, 288, 618 Google Scholar
Sánchez-Blázquez, , et al., 2006, MNRAS, 371, 703 Google Scholar
Schmidt, E. G., 1972, ApJ, 174, 595 Google Scholar
Schmidt-Kaler, Th., 1982, in Landolt-Bornstein (New Series), Vol. 3, Eds. Schaifers, K. & Voigt, H. H. (Berlin: Springer-Verlag), 1 Google Scholar