Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T12:55:46.722Z Has data issue: false hasContentIssue false

The Effect of Circumstellar Material on the Light Curves of Eclipsing Binary Systems

Published online by Cambridge University Press:  02 January 2013

S. M. R. Ghoreyshi*
Affiliation:
Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 72-3 (Xangari), Morelia, Michoacan 58089, Mexico
J. Ghanbari
Affiliation:
Department of Physics, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran Department of Physics, KhayyamInstitute of Higher Education, Mashhad, Iran
F. Salehi
Affiliation:
Department of Physics, KhayyamInstitute of Higher Education, Mashhad, Iran
*
DCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study inspects the influence of various effects and free parameters of the accretion disc and circumstellar material on the emerging light curve of eclipsing binary systems that have a circumstellar disc, by using the SHELLSPEC code. The results indicate that some of the parameters, namely the temperature and inclination of the disc, spot, jet, stream and shell, significantly affect on the emerging light curve, while some other parameters, namely the exponent of the power-law behavior of the density of the disc, microturbulence, inner and outer radius of the disc, do not noticeably affect on the emerging light curve. An application to the Algol-type eclipsing binary system AV Del and an accretion disc model for the system using the SHELLSPEC code is included.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Bradstreet, D. H. & Steelman, D. P., 2002, BAAS, 34, 1224Google Scholar
Bradt, H., 2008, Astrophysics Processes, (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Budaj, J. & Richards, M. T., 2004, Contrib. Astron. Obs. Skalanté Pleso, 34, 167Google Scholar
Budaj, J., & Richards, M. T. & Miller, B., 2005, ApJ, 623, 411CrossRefGoogle Scholar
Cher epashchuk, A. M., Eaton, J. A. & Khaliullin, K. F., 1984, ApJ, 281, 774CrossRefGoogle Scholar
Djurasevic, G., 1992, Ap&SS, 197, 17Google Scholar
Drechsel, H., Haas, S., Lorenz, R. & Mayer, P., 1994, A&A, 284, 853Google Scholar
Eggleton, P., 2006, Evolutionar y Processes in Binary and Multiple Stars, (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Ghoreyshi, S. M. R., Ghanbari, J. & Salehi, F., 2011, PASA, 28, 1Google Scholar
Hadrava, P., 1997, A&AS, 122, 581Google Scholar
Halbedel, E. M., 1984, IBVS, 2549, 1Google Scholar
Haffmeister, C., 1935, Astron. Nature, 255, 401Google Scholar
Hill, G., 1979, Publ. Dom. Astrophys. Obs. Victoria, 15, 297Google Scholar
Horne, K. & Marsh, T. R., 1986, MNRAS, 218, 761CrossRefGoogle Scholar
Hubeny, I., 1988, Comput. Phys. Commun, 52, 103CrossRefGoogle Scholar
Hubeny, I. & Lanz, T., 1992, A&A, 262, 501Google Scholar
Hubeny, I. & Lanz, T., 1995, ApJ, 439, 875CrossRefGoogle Scholar
Hubeny, I., Lanz, T., & Jeffery, C. S., 1994, in Newsletter on Analysis of Astronomical Spectra 20, ed. Jeffery, C. S. (CCP7; St. Andrews: St. Andrews Univ.), 30Google Scholar
Karetnikov, V. G., Menchenkova, E. V. & Nazarenko, V. V., 1985, AN, 316, 163Google Scholar
Krtička, J. & Kubát, J., 2002, A&A, 388, 531Google Scholar
Kubát, J., 2001, A&A, 366, 210Google Scholar
Kurucz, R. L., 1993a, Kurucz CD-ROM 18, SYNTHE Spectrum Synthesis Programs and Line Data (Cambridge: SAO)Google Scholar
Kurucz, R. L., 1993b, Kurucz CD-ROM 13, ATLAS9 Stellar Atmosphere Programs and 2 km s−1 grid (Cambridge: SAO)Google Scholar
la Dous, C., 1989, A&A, 211, 131Google Scholar
Linnell, A. P. & Hubeny, I., 1996, ApJ, 471, 958CrossRefGoogle Scholar
Long, K. S. & Knigge, C., 2002, ApJ, 579, 725CrossRefGoogle Scholar
Lucy, L. B., 1968, ApJ, 153, 877CrossRefGoogle Scholar
Mader, J. A., Torres, G., Marshall, L. A. & Rizvi, A., 2005, AJ, 130, 234CrossRefGoogle Scholar
Mochnacki, S. W. & Doughty, N. A., 1972, MNRAS, 156, 51CrossRefGoogle Scholar
Orosz, J. A. & Wade, R. A., 2003, ApJ, 593, 1032CrossRefGoogle Scholar
Piskunov, N. E., 1992, in Stellar Magnetism, ed. Glagolevskij, Yu. V. & Romanyuk, I. I. (Saint Petersburg: Nauka), 92Google Scholar
Popper, D. M., 1996, ApJS, 106, 133CrossRefGoogle Scholar
Pribulla, T., 2004, in ASP Conf. Ser. 318, Spectroscopically and Spatially Resolving the Components of Close Binary Stars, ed. Hilditch, R. et al. (San Francisco: ASP), 117Google Scholar
Progra, D., Kallman, T. R., Drew, J. E. & Hartley, L. E., 2002, ApJ, 572, 382CrossRefGoogle Scholar
Richards, M. T. & Albright, G. E., 1999, ApJS, 123, 537CrossRefGoogle Scholar
Richards, M. T. & Ratliff, M. A., 1998, ApJ, 493, 326CrossRefGoogle Scholar
Rucinski, S. W., 1973, Acta. Astron, 23, 79Google Scholar
Rybicki, G. B. & Hummer, D. G., 1983, ApJ, 274, 380CrossRefGoogle Scholar
Smith, K. C., & Dworetsky, M. M., 1988, in Elemental Abundance Analyses, ed. Adelman, S. J. & Lanz, T. (Lausanne: Inst. Astron. Univ. Lausanne), 32Google Scholar
Vinkó, J., Hegedüs, T. & Hendry, D., 1996, MNRAS, 280, 489CrossRefGoogle Scholar
Wade, R. A. & Hubeny, I., 1998, ApJ, 509, 350CrossRefGoogle Scholar
Wheeler, J. C., 2007, Cosmic Catastrosphes, (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
Wilson, R. E., 1979, ApJ, 234, 1054CrossRefGoogle Scholar
Wilson, R. E., 1990, ApJ, 356, 613CrossRefGoogle Scholar
Wilson, R. E. & Devinney, E. J., 1971, ApJ, 166, 605CrossRefGoogle Scholar
Zhang, E. H., Robinson, E. L. & Nather, R. E., 1986, ApJ, 305, 740CrossRefGoogle Scholar
Zucker, S. & Mazeh, T., 1994, ApJ, 420, 806CrossRefGoogle Scholar