Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T23:20:16.701Z Has data issue: false hasContentIssue false

The Effect of Aqueous Alteration and Metamorphism in the Survival of Presolar Silicate Grains in Chondrites

Published online by Cambridge University Press:  05 March 2013

Josep M. Trigo-Rodriguez*
Affiliation:
Institut of Space Sciences (CSIC), Campus UAB, Facultat de Ciències, Torre C5-parell-2a, 08193 Bellaterra, Barcelona, Spain Institut d'Estudis Espacials de Catalunya (IEEC), Edif. Nexus, c/Gran Capità, 2-4, 08034 Barcelona, Spain
Jürgen Blum
Affiliation:
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany
*
DCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Relatively small amounts (typically between 2 and 200 ppm) of presolar grains have been preserved in the matrices of chondritic meteorites. The measured abundances of the different types of grains are highly variable from one chondrite to another, but are higher in unequilibrated chondrites that have experienced little or no aqueous alteration and/or metamorphic heating than in processed meteorites. A general overview of the abundances measured in presolar grains (particularly the recently identified presolar silicates) contained in primitive chondrites is presented. Here we will focus on the most primitive chondrite groups, as typically the highest measured abundances of presolar grains occur in primitive chondrites that have experienced little thermal metamorphism. Looking at the most aqueously altered chondrite groups, we find a clear pattern of decreasing abundance of presolar silicate grains with increasing levels of aqueous alteration. We conclude that measured abundances of presolar grains in altered chondrites are strongly biased by their peculiar histories. Scales quantifying the intensity of aqueous alteration and shock metamorphism in chondrites could correlate with the content of presolar silicates. To do this it would be required to infer the degree of destruction or homogenization of presolar grains in the matrices of primitive meteorites. To get an unbiased picture of the relative abundance of presolar grains in the different regions of the protoplanetary disk where first meteorites consolidated, future dedicated studies of primitive meteorites, IDPs, and collected materials from sample-return missions (like e.g. the planned Marco Polo) are urgently required.

Type
Grains
Copyright
Copyright © Astronomical Society of Australia 2009

References

Anders, E. & Grevesse, N., 1989, GeCoA, 53, 197 Google Scholar
Bischoff, A., Scott, E. R. D., Metzler, K. & Goodrich, C. A., 2006, in Meteorites and the Early Solar System II, Eds. Lauretta, D. S. & McSween, H. Y. Jr (Tucson: University of Arizona Press), 943, 679 Google Scholar
Blum, J., Schräpler, R., Davidson, B. J. R. & Trigo-Rodríguez, J. M., 2006, ApJ, 652, 1768 Google Scholar
Bonal, L., Quirico, E. & Bourot-Denise, M., 2004, LPI, 35, abstract 1562Google Scholar
Bonal, L., Quirico, E., Bourot-Denise, M. & Montagnac, G., 2006, GeCoA, 70, 1849 Google Scholar
Bonal, L., Bourot-Denise, M., Quirico, E., Montagnac, G. & Lewin, E., 2007, GeCoA, 71, 1605 Google Scholar
Brearley, A. J., 1993, GeCoA, 57, 1521 CrossRefGoogle Scholar
Brearley, A. J., 1996, in Chondrules and the Protoplanetary Disk, Eds. Hewins, R. H., Jones, R. H. & Scott, E. R. D. (Cambridge: Cambridge University Press), 137 Google Scholar
Brearley, A. J. & Jones, R. H., 1998, in Planetary Materials, Ed. Papike, J. J. (Washington, DC: Mineralogical Society of America), 3 Google Scholar
Brownlee, D. et al., 2006, Sci, 314, 1711 CrossRefGoogle Scholar
Chizmadia, L. J., Rubin, A. E. & Wasson, J. T., 2002, M&PS, 37, 1781 Google Scholar
Floss, C. & Stadermann, F. J., 2007, M&PSA, 42, 5060 Google Scholar
Floss, C. & Stadermann, F. J., 2008, LPI, 34, abstract #1280Google Scholar
Grady, M. M., Verchovsky, A. B., Franchi, I. A., Wright, I. P. & Pillinger, C. T., 2002, M&PS, 37, 713 Google Scholar
Grossman, J. N. & Brearley, A. J., 2005, M&PS, 40, 87 Google Scholar
Hiroi, T., Zolensky, M. E. & Pieters, C. E., 2001, Sci, 293, 2234 Google Scholar
Huss, G. R., 1990, Natur, 347, 159 CrossRefGoogle Scholar
Huss, G. R., 1997, in Astrophysical Implications of the Laboratory Study of Presolar Materials, Eds. Bernatowicz, T. J. & Zinner, E. K. (Woodbury, NewYork: American Institute of Physics), 721 Google Scholar
Huss, G. R., 2004, AMR, 17, 132 Google Scholar
Huss, G. R. & Lewis, R. S., 1995, GeCoA, 59, 115 Google Scholar
Huss, G. R., Lewis, R. S. & Hemkin, S., 1996, GeCoA, 60, 3311 Google Scholar
Huss, G. R., Meshik, A. P., Smith, J. B. & Hohenberg, C. M., 2003, GeCoA, 67, 4823 Google Scholar
Huss, G. R., Rubin, A. E. & Grossman, J. N., 2006, in Meteorites and the Early Solar System II, Eds. Lauretta, D. S. & McSween, H.Y. (Houston: University of Arizona), 567 CrossRefGoogle Scholar
Hutchison, R., 2004, in Meteorites (UK: Cambridge University Press), 520 Google Scholar
Jewitt, D., Chizmadia, L., Grimm, R. & Prialnik, D., 2007, in Protostars and Planets V, Eds. Reipurth, B., Jewitt, D. & Keil, K. (Houston, University of Arizona), 863 Google Scholar
Keller, L. & Buseck, P. R., 1990, GeCoA, 54, 1155 CrossRefGoogle Scholar
Kobayashi, S. et al., 2005, LPI, 36, abstract #1931Google Scholar
Krot, A. N., Scott, E. R. D. & Zolensky, M. E., 1995, Metic, 30, 748 Google Scholar
Lee, M. R. & Ellen, R., 2008, M&PS, 43, 1219 Google Scholar
Leitner, J., Hoppe, P., Huth, J. & Zipfel, J., 2008, in 71st Meteoritical Soc. Meeting, abstract #5053Google Scholar
Marhas, K. K. & Hoppe, P., 2005, M&PS, 40, A95 Google Scholar
Marhas, K. K., Hoppe, P., Stadermann, F. J., Floss, C. & Lea, A. S., 2006, LPI, 37, abstract #1959Google Scholar
Messenger, S., Keller, L. P., Stadermann, F. J., Walker, R. M. & Zinner, E., 2003, Sci, 300, 105 CrossRefGoogle Scholar
Mostefaoui, S. & Hoppe, P., 2004, ApJ, 613, L149 Google Scholar
Mostefaoui, S., Marhas, K. K. & Hoppe, P., 2004, LPI, 35, abstract #1593Google Scholar
Nagashima, K., Krot, A. N. & Yurimoto, H., 2004, Natur, 428, 921 CrossRefGoogle Scholar
Nagashima, K. et al., 2005, LPI, 36, abstract #1671Google Scholar
Nguyen, A. N., 2005, PhD Thesis, Washington University, St Louis Google Scholar
Nguyen, A. N. & Zinner, E., 2004, Sci, 303, 1496 Google Scholar
Nguyen, A. N., Zinner, E. & Stroud, R. M., 2005, in 36th Annual Lunar and Planetary Science Conference, March 14–18, 2005, Texas, abstract #2196Google Scholar
Nguyen, A. N., Busemann, H. & Nittler, L. R., 2007, LPI, 38, abstract #2332Google Scholar
Nuth, J.A. III, 2008, in Advances in Meteoroid and Meteor Science, Eds. Trigo-Rodríguez, J. M., Rietmeijer, F. J. M., Llorca, J. & Janches, D. (Springer), 435 Google Scholar
Ott, U., 2007, SSRv, 130, 87 Google Scholar
Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T., 2007, GeCoA, 71, 2361 CrossRefGoogle Scholar
Russell, S. S., Huss, G. R., Fahey, A. J., Greenwood, R. C., Hutchison, R. & Wasserburg, G. J., 1998, GeCoA, 62, 689 CrossRefGoogle Scholar
Scott, E. R. D. & Jones, R. H., 1990, GeCoA, 54, 2485 Google Scholar
Scott, E. R. D. & Krot, A. N., 2003, in Treatise on Geochemistry Vol. 1., Meteorites, comets and planets, Ed. Davis, A. M. (Elsevier), 143 Google Scholar
Sears, D. W. G., Batchelor, J. D., Lu, J. & Keck, B. D., 1991, in Fifteenth Symposium on Antarctic Meteorites, Proceedings of the NIPR Symposium, No. 4 (National Institute of Polar Research), 219 Google Scholar
Stadermann, F. J. & Floss, C., 2008, LPI, 39, abstract #1889Google Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., Hopp, J., Fiéni, C., Ghélis, M., Bourot-Denise, M. & Pellas, P., 2003, Natur, 422, 502 Google Scholar
Trigo-Rodríguez, J. M. & Blum, J., 2009, P&SS, 57, 243 Google Scholar
Trigo-Rodríguez, J. M., Rubin, A. E. & Wasson, J. T., 2006, GeCoA, 70, 1271 Google Scholar
Vollmer, C., Hoppe, P., Brenker, F. E. & Holzapfel, C., 2007, LPI, 38, abstract #1262Google Scholar
Weidling, R., Güttler, C. & Blum, J., 2009, ApJ, 696, 2036 Google Scholar
Weisberg, M. K., McCoy, T. J. & Krot, A. N., 2006, in Meteorites and the Early Solar System II, Eds. Lauretta, D. S. & McSween, H.Y. (Houston: University of Arizona), 19 Google Scholar
Williams, C. V., Rubin, A. E., Keil, K. & San Miguel, A., 1985, Metic, 20, 331 Google Scholar
Zinner, E., 2003, in Treatise on Geochemistry Vol. 1, Meteorites, comets and planets, Ed. Davis, A. M. (Elsevier), 17 Google Scholar
Zinner, E., Amari, S., Guiness, R., Nguyen, A., Stadermann, F. J., Walker, R. M. & Lewis, R. S., 2003, GeCoA, 67, 5083 Google Scholar